Electrically Released Spring-Set Brakes \& Unibrake AC Motor Brakes

A
Warner Electric ${ }^{\circ}$
Altra Industrial Motion

Warner Electric

Founded in 1927, Warner Electric has grown to become a global leader in the development of innovative electromagnetic clutch \& brake solutions. Warner Electric engineers utilize the latest materials and manufacturing technologies to design long life, easy-to-use clutches and brakes that provide improved accuracy and repeatability. Warner Electric offers the broadest selection of industrial clutches, brakes, controls and web tension systems available from a single manufacturer.

Reliable Warner Electric components are used in a wide range of markets including material handling, packaging machinery, food \& beverage, elevator \& escalator, turf \& garden, agriculture, off-highway, forklift, crane and motion control. Applications include conveyors, lift trucks, wrapping machines, servo motors, capping equipment, combines, balers, baggage handling systems, military vehicles, hoists and lawn mowers.

VISIT US ON THE WEB A WARNERELECTRIC.COM

Altra Industrial Motion

Altra is a leading global designer and manufacturer of quality power transmission and motion control products utilized on a wide variety of industrial drivetrain applications. Altra clutches and brakes, couplings, gearing and PT component product lines are marketed under the industries most well known manufacturing brands. Each brand is committed to the guiding principles of operational excellence, continuous improvement and customer satisfaction. Highly-engineered Altra solutions are sold in over 70 countries and utilized in a variety of major industrial markets, including food processing, material handling, packaging machinery, mining, energy, automotive, primary metals, turf and garden and many others.

Altra's leading brands include Ameridrives, Bauer Gear Motor, Bibby Turboflex, Boston Gear, Delroyd Worm Gear, Formsprag Clutch, Guardian Couplings, Huco, Industrial Clutch, Inertia Dynamics, Kilian, Lamiflex Couplings, Marland Clutch, Matrix, Nuttall Gear, Stieber, Stromag, Svendborg Brakes, TB Wood's, Twiflex, Warner Electric, Warner Linear and Wichita Clutch.

VISIT US ON THE WEB AT ALTRAMOTION.COM

Electrically Released Spring-Set Brakes \& Unibrakes

Pages	Electrically Released Spring-Set Brakes \& Unibrakes
1-6	Product Line Overview Introduction to Packaged Performance Products
A-2	Electronically Released Brakes Selection Guide
A-4	Electrically Released Brakes (ERS Series)
A-13	Spring-Set Brakes Modules SIZES 50, 100, 180 SIZES 210, 215 (EM/ERS Series)
A-17	Electrically Released Brakes (ERD Series)
A-30	Unibrake AC Motor Brakes
SP-2	Unibrakes Compatible Service Parts
G-1	General Engineering Data
G-3	NEMA Standard Ordering Info
G-4	Mechanical
G-8	Electrical Data
AD-1	Application Data Form
CTL-1	Clutch/Brake Controls
PN-1	Part Numbers
I-1	Index

Electromagnetic Clutches and Brakes

Packaged Products Benefits

Warner Electric Packaged Products come pre-assembled, ready to install right out of the box.

Warner Electric Packaged Products consist of a single part number in most cases. One part number to inventory, one part number to track in your engineering system.

All Warner Electric packaged products incorporate our Autogap ${ }^{\text {TM }}$ mechanism that automatically adjusts for wear. This eliminates the need for maintenance, but more importantly, it ensures the same engagement time cycle after cycle after cycle through the whole life of the unit ensuring consistent product manufacturing processes.

Warner Electric Packaged designs are available for:

- C-face mount applications
- Parallel shaft applications
- Base mount applications

The Basics

The electric clutch and brake has been called the best thing that ever happened to the electric motor. It's simple, electric clutches and brakes do all the work, while permitting motors to run smoothly and continuously at their most efficient speed by connecting/ disconnecting the motor and the load. Fast starts and stops, easy control interface, remote pushbutton operation and smooth acceleration and deceleration are outstanding user benefits.

Reliable Performance

High cycle rates
Smooth soft starts

- Cushioned stops
- Accurate positioning

Indexing

- Jogging
- Reversing
- Speed changing

Principle of Operation

A key feature of Warner Electric brakes and clutches is the method of actuation. Like an electromagnet, they have two basic parts. A magnetic field is generated as soon as the current flows through the magnet coil. This draws the armature into direct contact with the magnet. The strength of the magnetic field is directly proportional to the amount of current applied. Full range torque control from 0 to 100% is as simple as turning the knob on a light dimmer.

Fast and Accurate

The benefits of electric actuation combined with the use of small, low inertia components is fast response, high cycle rates, and increased accuracy. While other devices are often sluggish and slow to respond, electric brakes and clutches respond instantly, resulting in higher productivity and better consistency.

Easy to Select

Most of the time, all you need to know is motor horsepower and the speed at the brake or clutch location. Warner Electric takes care of the rest. The performance you require is built in, and with the broad range of products to choose from, you won't have to compromise with a clutch or brake that's a little too big or a little too small.

Maintenance Free

Warner Electric brakes and clutches are clean and quiet. They require no maintenance. They never need lubrication, and they're completely self adjusting for wear. No complicated air system or messy hydraulics. Warner Electric brakes and clutches are outstandingly trouble free.

Controllable

Electric brakes and clutches are incredibly easy to control. The shift from positive, instantaneous engagement to soft, cushioned starts and stops is as simple as turning a knob.

Torque/Current Curve

Packaged Performance Products

NEMA C-face Clutches, Brakes and Clutch Brake Combinations P-8586-WE

Electro Module
Individual Clutch and Brake Modules

EM Series

Modular Components that are Easily Combined

- 5 sizes

- 16 clutch and brake modules
- 16 to 95 lb . ft. torque range

Individual modules may be used in combination to form clutches, brakes or clutch/brake packages.

Electro Modules can be bolted directly to NEMA C-face motors or reducers, or base mounted for stand alone operation.

See P-8586-WE for Service Parts

UniModule ${ }^{\circledR}$

One Piece Preassembled Clutches and Clutch/Brakes

UM Series

C-face or Base Mounted Units

- 5 sizes
- 20 combinations
- 16 to 95 lb . ft. torque range

UniModule clutches and clutch/ brake packages offer the ultimate in installation convenience.

Can be motor or reducer mounted, or used as a separate drive unit powered from a prime mover.

See P-8586-WE for Service Parts

UM Smooth-Start

Soft Engage Designs

```
\square5 sizes
10-57 lb.ft. torque range
```

Smooth-Start designs allow for a soft engage clutch and brake without sacrificing unit life.

UM-C Series

High Performance Version for High Cycle Rate Applications

- 3 sizes

- 6 combinations

16 to 95 lb . ft torque range
The UM-C units are UniModules with ceramic faced components, specifically designed for long life, high energy, and high cycle rate applications.

Enclosed UniModule ${ }^{\oplus}$

Preassembled Units Offer Clean, Quiet Operation

EUM Series

Totally Enclosed Clutch and Brake Packages

- 5 sizes
- 3 combinations
- 16 to 95 lb . ft. torque range

Totally enclosed, rugged enclosure
keeps wear particles in and
contaminants out. Finned for rapid heat dissipation and long life.

See P-8586-WE for Service Parts

EUM-W Series

Washdown Version

- 5 sizes
- 8 combinations
- 16 to 95 lb . ft. torque range

The washdown version of the EUM uses stainless steel shafting, USDA approved coating, corrosion resistant fasteners and special seals.

See P-8586-WE for Service Parts

Packaged Performance Products

Shaft Mounted Clutches \& Brakes P-8587-WE

Base Mounted Clutch/Brake Combinations P-8588-WE

EC Series Clutches

Pre-Packaged Convenience

- 6 sizes
- 16 to 465 lb . ft. torque range

All the features of an electric clutch in a convenient, pre-packaged assembly. Mounts on any through shaft or extended motor shaft. Easy-to-assemble with standard sheaves, pulleys, gears and sprockets. Packaged design. No assembly required. Long life. No maintenance.

See P-8587-WE for Service Parts

EB Series Brakes

Torque Arm Mounting

- 6 sizes
- 16 to 465 lb . ft. torque range

Torque arm feature makes Electro Brakes easy to mount on any motor or through shaft. Packaged design. No assembly required. Long life. No maintenance.

See P-8587-WE for Service Parts

Advanced Technology
Clutches and Brakes
Extra Rugged Design

ATC Series Clutches
 ATB Series Brakes

Replaceable Friction Faces

- 3 sizes
- 25 to 115 lb . ft. torque range

Rugged, heavy duty units designed for extra long life and efficient operation. Cast components for durability. Finned armatures for high heat dissipation.

Friction faces are designed to allow for replacement without replacing valuable, non-wear components. Provides superior wear life with reduced engagement noise.

See P-8587-WE for Service Parts

SFP Series Clutches

- Pre-assembled SF - No assembly required
- Ball bearing mounted field and armature
- 70 inch pound and 270 inch pound sizes
- Bore sizes from $3 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$ and 1/2" to 1"

SFP clutches provide the simplicity and cost efficiency of the Basic SF design, but with a ball bearing mounted armature hub.

Electro Pack Clutch/Brakes
 Foot Mounted Units

EP Series

Totally Enclosed Units

- 8 sizes
- 15 lb . to 1350 lb . ft. torque range

Electro Packs are rugged, preassembled clutch and brake combinations in enclosed, foot mounted housings.

See P-8588-WE for Service Parts

EP-C Series

High Performance Version

- 2 sizes
- 15 and 70 lb . in. torque

Ceramic faced wear components provide long life for high cycle rate use. Consistent torque and cycle repeatability with Smooth-Start/stop control.

EP-W Series

Washdown Design

- 2 sizes
- 70 and 270 lb . in. static torque ranges
U USDA approved coating
- Stainless steel shaft and hardware
- Available in 24 or 90 volt DC

Packaged Performance Products

Electrically Released
 Spring-Set Brakes \& Unibrake AC Motor Brakes P-8589-WE

Spring-Set Brakes
 For Power-Off Static Holding and Emergency Stopping Applications

WARNING For general use in horizontal shaft applications only. For possible vertical applications, contact technical support.

ERS Series
 Static Engaged

- 5 sizes

- 1.5 to 100 lb . ft. holding torque

Designed for static holding. ERS models feature multiple coil springs that force armature and friction faces together to generate braking torque when power is off. The Electromagnet counters the spring force to disengage the brake when power is applied.

Although this brake should be engaged only when the shaft is a rest, it can occasionally act as a dynamic braking device to stop a rotating load in an emergency situation.

Spring Set Brake
 Module

- 7 to 100 lb . ft. holding torque

NEMA C-face version of the ERS Series

ERD Series

Dynamic Braking

- 8 sizes

- 4 to 221 lb . ft. holding torque

ERD units are electrically released, static and dynamic engaged, springset brakes for power-off load holding applications. These spring-set brakes automatically stop and hold a load in the event of a power failure or other emergency stop situations. Fully dynamic friction material allows for repeated braking cycles from full motor speed with no torque fade. An optional manual release allows the brake to be released by hand.

Unibrake Series

AC Motor Brakes

- Spring Set/Solenoid Released
- Direct acting/manual release standard 3 families
- 3, 6, 10 and 15 lb . ft. capacity
] Steel or cast iron covers
- Rear mount or double C-face designs

Permanent Magnet Brakes For Power-Off Dynamic Stopping and Cycling Applications

FB Series
Shaft Mounted, Dynamic Braking

- 3 models
- 10.5 to 56 lb . ft. static torque

Permanent magnet brakes are designed to dynamically stop and hold a moving load and also for high cycle rate stopping. Electric power to the coil nullifies the attraction of the permanent magnet, releasing the brake.

FB models are pre-assembled and feature a torque arm for convenient shaft mounting.

See P-8590-WE for Service Parts.

ER Series

Flange Mounted, Dynamic Braking

- 5 models
- 10.5 to 400 lb . ft. static torque

The ER style brake offers a bullk head flange mounting system, the highest torque rating offered by Warner Electric in the power released series, high cycle rate capability, and excellent life. They require some assembly.

See P-8590-WE for Service Parts.

Electro Module

C-face Brake Modules

EM-FBC Clutch/Brakes

 Individual Module Components
$\square 3$ sizes

- 10.5 to 56 lb . ft. torque range

Used in combination with an Electro Module motor or input clutch module for clutch/brake applications. Electrical power applied to the brake coil nullifies the permanent magnets' force and the brake releases. No springs to limit cycle rates.

EM-FBB

Brake Modules

- 5 sizes

- 10.5 to 56 lb . ft. torque range

Use for brake alone applications. Mounts between a C-face motor and reducer. Recommended for dynamic cycling operations only.

EM-MBFB

Motor Brakes

- 4 sizes
- 56C to 215C frame motors

Mounts to the back of a double shafted C-face motor. Never needs adjustment or lubrication.

UniModule

C-face Brake Modules

UM-FBC Clutch/Brakes
 One Piece Packages

- 4 sizes

- 7 combinations
] 10.5 to 56 lb . ft. static brake torque
UniModule pre-assembled clutch and electrically released brake packages are available in both C-face and base mounted versions.

Unique design employs powerful permanent magnets for maximum torque when power is removed from the brake coil. A small amount of electrical power applied to the brake coil nullifies the permanent magnets and the brake releases. No springs to limit cycle rates. Never any adjustment. No lubrication. These brakes are recommended for dynamic cycling operations only.

Enclosed UniModule
 C-face Brake Modules

EUM-FBB Brake Modules
 Totally Enclosed

- 4 sizes

- 6 to 32 lb . ft. static torque

Totally enclosed UniModule electrically released brake packages keep contaminants out and wear particles in for clean, quiet operation. Assembly, alignment, and preburnishing have been done at the factory. Use for brake alone applications, mountings between a motor and a gear reducer. Select the torque required for the application. Higher torque brakes stop loads faster. Lower torque models provide softer stopping to prevent boxes on conveyors from tipping or skidding.

EUM-MBFB

Motor Brakes

- 4 sizes
- 56C to 215C frame motors

UniModule motor brakes are used for dynamic stopping and holding of loads when power is removed from the motor. Typical applications include conveyors, process equipment, and lifting devices. Mounts to a double shafted C-face motor.

Notes

Spring-Set Brakes Unibrake AC Motor Brakes

Selection Guide Electrically Released Bralkes

Electrically Released brakes fall within two categories: Static Engage and Dynamic Stopping. Static engage brakes are similar in function to an automotive parking brake: while they can be used to stop in an emergency, they are primarily to hold a load stationary after the load is already stopped. A static engage brake that is used as an active stopping brake at high cycle rate will wear out quickly.

Common industrial static applications are vertical or incline conveyors. The drive and motor may decelerate the conveyor to a stop and then engage the brake to hold the load in position. A second common application is where a servo or step motor will accelerate and decelerate the load and the brake holds the load in proper position.

Dynamic engage brakes are those designed to actively stop and hold the load. In these applications the brake is the force that stops the load as well as hold it. Dynamic engagement brakes are designed to provide appropriate life in applications where they experience frequent cycles per minute.

All electrically released brakes will engage when power is turned off and as such will provide emergency stop braking.

Static Engage Brakes

- ERS
- ERD
- EM/ERS

Dynamic Engage Brakes

- FB
- ER
- EM-FBB, FBC, MBFB
- UM-FBC and MBFB
- Unibrake

Selection Guide Electrically Released Brakes

Load Holding	Manual Release	Bearing Mount	Flange Mount	C-Face Mtg Drive Side	C-Face Mtg Non-Drive Side	Coil Voltage	Adjustable Torque
						DC	
						DC	
						DC	
						DC	
						DC	
				$\sqrt{ }$		DC	$\sqrt{ }$
						DC	
						DC	
						AC	
$\sqrt{ }$	$\sqrt{ }$					DC or AC	

Spring-Set Electrically Released Brakes

Spring Set Brakes

Robotics

ERS Brakes can position and hold robotic equipment. Emergency braking in the event of power loss can prevent damage to equipment.

Automated Material Handling Systems

ERS Brakes hold rollers and lift mechanisms in place, and lock drive wheels in place.

Medical Equipment
ERS brakes are used as parking brakes in wheelchairs and holding brakes in medical apparatus such as mammography and cat scan equipment.

Overhead Door

The ERD can be used in conjunction with a photo eye. In this application, whenever the light beam is broken, voltage to the brake is removed.
The brake then applies and holds the door in position. Further, the manual release feature allows the operator to open/close the door in the event of a power failure.

ERS Series Electrically Released Brakes

For Static Holding and Emergency Stopping

Packaged Performance

Warner Electric ERS Brakes are pre-assembled and burnished at the factory. The engineering is built-in. Each unit is checked to ensure full rated torque right out-of-the-box. Just secure the hub, bolt down the brake and wire it up. An optional AC to DC control is available for use with all 90 volt units. Unique mounting features make it easy to adapt the ERS Brake to almost any application requirement.

ERS brakes are available in NEMA C-face mounted modules. Please consult factory for assistance.

Features

- Designed for static holding operations
- Brake automatically engages when power is turned off
- Flexible mounting
- Electrically released - spring actuated
- Quick, quiet response for rapid engagement
- Compact, low profile design saves space
- Spline drive for high torque, minimal backlash and long life
- Available in five sizes. Static torque ratings from $1.5 \mathrm{lb} . \mathrm{ft}$. to $100 \mathrm{lb} . \mathrm{ft}$.
- UL listed - All sizes.

WARNING For general use in horizontal shaft applications only. For possible vertical applications, contact technical support.

Principle of Operation

ERS Brake torque is developed when springs apply a clamping force between the brake armature and the friction disc to the end plate. Spring clamping force provides the holding torque of the brake.

To release the brake, electrical power is applied to the magnet coil, generating a magnetic attractive force between the armature and magnet. The magnetic force overcomes the spring action, allowing the friction disc to rotate freely.
"Electrically Released" brakes are so named because, when power is removed, the brake will stop and hold a load. This occurs when power is lost either intentionally or unexpectedly due to a machine malfunction. When power is on, the brake electrically releases the load, allowing it to move freely.

ERS Series Electrically Released Brakes

Selection

Sizing

Three factors are important for proper sizing:

- Static holding torque requirement
- System inertia and brake RPM
- Stopping time

Step 1

Holding Torque
Select the size unit with torque capacity closest to, but not less than, the holding torque required.

Brake Size	Holding Torque Rating lb. ft.
ERS-26	1.5
ERS-42	7.0
ERS-49	15.0
ERS-57	34.0
ERS-68	100.0

Selection Procedure

ERS Brakes are available in five models for an optimum size to match your application requirements. Static torque capabilities range from $1.5 \mathrm{lb} . \mathrm{ft}$. to $100 \mathrm{lb} . \mathrm{ft}$.

The stopping function is an important consideration when deciding which brake to use. Will the brake be engaged and disengaged in a static condition (zero speed difference between the armature disc and the friction disc)? If yes, the ERS Brake is the right choice.

Will the brake be normally engaged and disengaged in a static condition with intermittent engagements dynamically? An emergency stop is a good example. If yes, the ERS Brake is the ideal choice.

Will the brake be subject to frequent dynamic braking action? If yes, then a Warner Electric ER, FB or ERD brake should be considered. The ERS Brake is not the best choice for use as a high cycle rate dynamic brake.

Step 2

System Inertia/Emergency Stop
In an emergency stop (when power is interrupted), the ERS Brake will engage and bring the load to a stop. To properly size a brake for this application, load inertia must be known. This is the total inertia of all components which are to be brought to a stop. Adding the inertia of the ERS Brake is not necessary; it has been included in the selection chart.

With the load inertia and brake RPM known, use the Emergency Stop Selection Chart to verify your brake selection. Simply locate the intersection of your RPM and inertia and make sure you are not above the line for the brake you selected based on Holding Torque (Step 1). If you are above the line, select the brake designated by the next higher line.

Emergency Stop Selection Chart

*ERS-68 is only rated up to 2000 RPM

ERS Series Electrically Released Brakes

Step 3

Stopping Time

In some applications, it is desirable to know how fast a brake will bring a load to rest. The time to stop a load can be determined if the system inertia and brake holding torque are known, according to the following equation:
Where: $\quad t=\frac{W R^{2} N}{308 T}$
t $\quad=$ time to stop the load in seconds (sec.)
$\mathrm{WR}^{2}=$ system inertia at the brake location in pound-feet squared (lb.ft. ${ }^{2}$)
$\mathrm{N}=$ speed of the brake shaft in revolutions per minute (RPM)
$\mathrm{T}=$ rated brake holding torque in pound-feet (lb.ft.) See step 1, page 110.

Actual stopping times depend on application variables, which include brake temperature, electrical suppression (see the brake apply time data below), manufacturing tolerances, friction material wear, etc. For this reason, specific stop times should be evaluated under actual application conditions.

If your application has special requirements, please call us.

Step 4

Select Control
Consult the Controls Section for control product overview. The holding torque for an ERS is not adjustable. Therefore, an adjustable torque control is not required.

Brake Apply/Release Time (Typical Values)

Model	Brake Release Time (Seconds)		Brake Apply Time (Seconds)			
			Suppression Circuit A		Suppression Circuit B	
	24V	90V	24V	90V	24V	90V
ERS-26	0.03	0.03	0.04	0.04	0.01	0.01
ERS-42	0.05	0.06	0.10	0.10	0.01	0.02
ERS-49	0.07	0.08	0.15	0.15	0.02	0.02
ERS-57	0.11	0.11	0.15	0.15	0.02	0.02
ERS-68	0.16	0.20	0.20	0.20	0.03	0.03

Note: Release and Apply Times are armature engagement and release only.

ERS Series Electrically Released Brakes

Armatures/Hubs

Armature Drives

The rugged splined drive provides flexibility in selecting the most efficient method of coupling a load to the ERS Brake. Each unit size has standard splined hubs available for common shaft sizes.

Recessed Hub

For maximum space efficiency, mount hub on shaft, then mount brake over hub.

Extended Hub
Mount brake first, then position hub on shaft so hub is beyond the brake.

Mating Splined Member
Machined spline on drive member matches armature spline to operate brake.

Drive Hub/Spline and Interface Data

Set Screw Orientation

Set Screw Orientation

Model	$\begin{gathered} \text { A } \\ \text { Bore } \end{gathered}$	Mating Key (Not furnished)	Set screw Orientation	B Nom.	c Nom.	Set Screws	No. of Teeth	Dia. Pitch	Pressure Angle
ERS-26	.2525/. 2505	1/16 $\times 1 / 16$	B	. 600	. 135	6-32	14	20/40	30°
	. $3150 / .3130$	$1 / 16 \times 1 / 16$	B						
	. $3775 / .3755$	$3 / 32 \times 3 / 32$	B						
ERS-42	. $3775 / .3755$	3/32 $\times 3 / 32$	A	. 700	. 150	8-32	19	16/32	30°
	. $5025 / .5005$	$1 / 8 \times 1 / 8$	A						
	. $6275 / .6255$	$3 / 16 \times 3 / 16$	A						
	.7525/.7505	$3 / 16 \times 3 / 16$	B						
ERS-49	. $3775 / .3755$	$3 / 32 \times 3 / 32$	A	. 800	. 160	10-32	21	16/32	30°
	. $5025 / .5005$	$1 / 8 \times 1 / 8$	A						
	.6275/. 6255	$3 / 16 \times 3 / 16$	A						
	.7525/.7505	3/16 \times 3/16	B						
	.8775/.8755	$3 / 16 \times 3 / 16$	B						
ERS-57	.5025/.5005	$1 / 8 \times 1 / 8$	A	. 800	. 190	1/4-20	15	10/20	30°
	. $6275 / .6255$	$3 / 16 \times 3 / 16$	A						
	.7525/.7505	3/16 $\times 3 / 16$	A						
	.8755/.8755	$3 / 16 \times 3 / 16$	B						
	1.0025/1.0005	$1 / 4 \times 1 / 4$	B						
ERS-68	1.0025/1.0005	$1 / 4 \times 1 / 4$	A	. 900	. 190	1/4-20	22	10/20	30°
	1.1275/1.1255	$1 / 4 \times 1 / 4$	A						
	1.2525/1.2505	$1 / 4 \times 1 / 4$	A						
	1.3775/1.3755	5/16 \times /16	A						
	1.5025/1.5005	$3 / 8 \times 3 / 8$	B						

Note: Involute spline data per ANSI B92. 1a-1976, Class 5.

Backlash

Total unit backlash includes spline and armature movement. It is typically less than one degree of rotation. Spline backlash alone is typically 15 minutes of rotation or less.

ERS Series Electrically Released Brakes

Mounting Orientation

ERS Brakes are easily modified to accommodate different mounting orientations. The brake can be mounted with either face against the mounting surface. The following mountings are possible with the standard ERS brake.

Mounting Requirements

1. Mounting surface to be perpendicular to shaft with in .006" T.I.R.
2. Mounting holes to be within .015 " true position to the shaft.

Through Bolt
Provides rigid support. May be mounted on either side of brake.

Tapped Hole

Works well where through bolt mounting is impractical.

Flange

Flange mounting to brake tapped holes for most versatile attachment to many different housings, motors, and frames.

Optional Adapter Mounting Flange

Model	A Nom.	B Nom.	C Holes	D Nom.
ERS-26	4.000	.935	$\# 4$.100
ERS-42	5.000	1.450	$\# 6$.144
ERS-49	6.250	1.575	$\# 8$.193
ERS-57	7.500	1.825	$\# 10$.193
ERS-68	9.500	2.500	$1 / 4$.224

[^0]
ERS Series Electrically Released Brakes

Ordering Information

Accessories

Adapter Flanges

Model	Part Number
ERS-26	$686-0182$
ERS-42	$686-0183$
ERS-49	$686-0184$
ERS-57	$686-0185$
ERS-68	$686-0186$

Ordering Information

Ordering the appropriate ERS brake for your application is a simple, step-by-step procedure based on the intended function, brake size, mounting configuration and operating voltage of the unit best suited for your needs, including any optional parts and accessories that you may require. A Warner Electric sales representative or distributor is always happy to provide assistance.

ERS Brake

Model	Voltage	Part Number
ERS-26	24 V	$5158-170-016$
	90 V	$5158-170-015$
ERS-42	24 V	$5151-170-002$
	90 V	$5151-170-001$
ERS-49	24 V	$5155-170-002$
	90 V	$5155-170-001$
ERS-57	24 V	$5153-170-003$
	90 V	$5153-170-002$
ERS-68	24 V	$5154-170-002$
	90 V	$5154-170-001$

Conduit Box

Model	Part Number
Conduit Box	$5154-101-001$
Mounts to	
ERS-49,57 and 68 only	

How to Order

1. Verify that the brake is to be used in a static holding/intermittent engagement application.

Splined Hub

Model	Bore Dia.	Part Number
ERS-26	.250	$5158-541-006$
	.312	$5158-541-007$
	.375	$5158-541-008$
ERS-42	.500	$5151-541-002$
	.625	$5151-541-003$
	.750	$5151-541-541-004$
	.375	$5155-541-005$
ERS-49	.500	$5155-541-003$
	.625	$5155-541-004$
	.750	$5155-541-005$
	.875	$5155-541-006$
	.500	$5153-541-004$
	.625	$5153-541-005$
	.750	$5153-541-006$
	.875	$5153-541-007$
	1.000	$5153-541-008$
	1.000	$5154-541-005$
ERS-57	1.125	$5154-541-006$
	1.250	$5154-541-007$
	1.375	$5154-541-008$
	1.500	$5154-541-009$

2. Choose the correct size ERS Brake from the selection procedure on pages 110-111. Select the correct brake part number for the appropriate size and desired operating voltage.
3. Choose the splined hub part number for the required bore diameter and unit size.

Model
CBC-100-1
AC to DC Control
To be used with 90V ERS brakes
See the Controls Section on CTL-1 for complete
information.
CBC-100-1 is 110 volt only

4. Select optional accessories, such as: adapter flange kit, AC to DC control and conduit box kit.

Controls

Special Requirements

ERS Brake modifications such as metric bores, special voltages and low torque units are available. Consult factory.

ERS Series Electrically Released Brakes

ERS-26, ERS-42, ERS-49, ERS-57, ERS-68

*Available only for the ERS-49, 57, and 68 sizes

ERS Series Electrically Released Brakes

ERS-26, ERS-42, ERS-49, ERS-57, ERS-68

Dimensions
All dimensions are nominal, unless otherwise noted.

Model	A Max.	B Max.	C	D	E	F	G
ERS-26	2.460	1.515	1.375	1.125	.860	1.250	
ERS-42	3.520	1.595	2.000	1.600	1.375	1.255	
ERS-49	4.270	1.767	2.600	1.750	1.500	1.332	
ERS-57	5.020	1.937	3.240	2.100	1.750	1.503	
ERS-68	6.520	2.030	4.504	2.800	2.425	1.565	4.025

Model	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M} Dia.	\mathbf{P}		
ERS-26	-	-	-	-	2.125	\mathbf{N} Dia.	$.172 / .164$	$4-40$
ERS-42	-	-	-	-	375			
ERS-49	4.625	1.000	1.625	3.750	3.125	$.200 / .190$.450	$.228 / .218$
ERS-57	5.000	1.170	1.625	3.750	4.500	$.288 / .278$	$8-32$.400
ERS-68	5.750	1.265	1.625	3.750	5.875	$.413 / .404$	$1 / 4-20$.500

Specifications

Model	Voltage DC	Power (Watts)	Current (Amperes)	Resistance (Ohms)	Static Torque (lb.ft.)	Inertia (lb.in.2)		Weight (lbs.)	
						Unit	Hub	Unit	Hub
ERS-26	24V	17.6	0.733	32.75	1.5	0.03	0.004	1.20	0.06
	90 V	16.0	0.178	506.5					
ERS-42	24V	23.3	0.973	24.67	7	0.14	0.040	2.50	0.20
	90 V	21.5	0.239	376.2					
ERS-49	24 V	27.3	1.136	21.12	15	0.45	0.060	4.30	0.25
	90 V	25.8	0.287	313.6					
ERS-57	24 V	36.2	1.510	15.9	34	0.54	0.110	6.50	0.38
	90 V	35.2	0.391	230.1					
ERS-68	24 V	54.9	2.286	10.5	100	1.44	0.550	11.30	0.75
	90 V	51.9	0.577	155.9					

Spring-Set Brake Modules Electrically Released Brakes

Packaged Spring-Set Brake Module for Holding Applications

The Spring-Set Brake Module is a NEMA C-face compatible unit designed to perform holding as well as occasional emergency stopping functions, making it particularly well-suited for motor brake applications. Because it is designed to be mounted on the front of a motor, it is an excellent choice for retrofitting an existing motor, or for use on custom designed machinery.

Features

- NEMA C-face compatible mounting
- Performs holding functions with occasional e-stops
- Completely assembled and preburnished at the factory
- Easy to install
- No adjustment required
- High torque, lead-free and asbestos-free friction material

WARNING For general use in horizontal shaft applications only. For possible vertical applications, contact technical support.

Size 210 \& 215

Sizes 50 \&180

Principle of Operation

SSBM Brake torque is developed when springs apply a clamping force between the brake armature and the friciton disc to the end plate. Spring clamping force provides the holding torque of the brake.

To release the brake, electical power is applied to the magnet coil, generating a magnetic attractive force between the armature and magnet. The magnetic force overcomes the spring action, allowing the friction disc to rotate freely.

Specifications

Model	NEMA Frame Size	Holding Torque (ft-Ibs)	Max RPM	Unit Weight (lbs)	Unit Inertia (lb-in2)	Voltage (DC)	Power (Watts)	Current (Amperes)	Resistance (Ohms)	Part Number
EM-50/ERS-42	56C/48Y	7.0	3600	6.4	. 295	24	23.3	0.973	24.67	5370-170-201
						90	21.5	0.239	376.2	5370-170-203
EM-50/ERS-49	56C/48Y	15.0	3600	8.2	. 673	24	27.3	1.136	21.12	5370-170-206
						90	25.8	0.287	313.6	5370-170-207
EM-180/ERS-49	143TC/145TC	15.0	3600	8.2	. 673	24	27.3	1.136	21.12	5370-170-219
						90	25.8	0.287	313.6	5370-170-220
EM-180/ERS-57	143TC/145TC	34.0	3600	10.4	. 955	24	36.2	1.510	15.90	5370-170-211
						90	35.2	0.391	230.1	5370-170-212
EM-210/ERS-68	182TC/184TC	100.0	2000	24.7	3.842	24	54.9	2.286	10.50	5371-170-046
						90	51.9	0.577	156.5	5371-170-047
EM-215/ERS-68	213TC/215TC	100.0	2000	24.7	3.842	24	54.9	2.286	10.50	5371-170-051
						90	51.9	0.577	156.5	5371-170-052

Spring-Set Brakes Electrically Released Brakes

SSBM Series-EM/ERS

Applications

The Warner Electric Spring-Set Brake Module is an ideal holding device in applications where the motor is used to stop and accurately position the load. The SSBM brake will hold the load in that position until electrically realeased. The SSBM is also a cost effective emergency stopping device in the event of power failure, machine malfunciton, or other occasional dynamic stopping.

Application examples include holding railroad crossing arms, basketball backboards, robotic arms, and assemblies on vertical ball screws.

Selection

SSBM Series Brakes are available in six models with static torque capabilities ranging from $7.0 \mathrm{lb} . \mathrm{ft}$. to $100 \mathrm{lb} . \mathrm{ft}$.

The stopping function is an important consideration when deciding which brake to use. Will the brake be engaged and disengaged in a static condition (zero speed difference between the armature disc and the friction disc)? If yes, then the SSBM Brake is the right choice.

Will the brake be normally engaged and disengaged in a static condition with intermittent engagements dynamically? An emergency stop is a good example. If yes, then the SSBM Brake is the ideal choice.

Will the brake be subject to frequent dynamic braking action? If yes, then a Warner Electric EM-FBB, EUM-FBB, EM-MBFB, EUM-MBFB, EM-FBC or UM-FBC should be considered because these are the best choices for use as high cycle rate dynamic brakes in NEMA C-face applications.

Sizing

Four factors are important for proper sizing:

- Motor frame size
- Static holding torque requirement
- System inertia and brake RPM
- Stop time

Be sure to consider each of these factors as outlined below to effectively select the most appropriate brake for your application.

1. NEMA C-face Mounting

Verify the brake is to be used in a static holding/intermittent engagement application.

Based on the NEMA C-face frame size of the prime mover, select the correct brake module size from the Frame Size Selection Chart.

Frame Size Selection Chart

NEMA Frame Size	Brake Model
$56 \mathrm{C} / 48 \mathrm{Y}$	EM-50/ERS-42
	EM-50/ERS-49
$143 \mathrm{TC} / 145 \mathrm{TC}$	EM-180/ERS-49
	EM-180/ERS-57
$213 \mathrm{TC} / 215 \mathrm{TC}$	EM-210/ERS-68

2. Holding Torque

Select the size unit with the torque capacity closest to, but not less than, the holding torque required.

Holding Torque Rating (ft.lb.)	Brake Model
7.0	EM-50/ERS-42
15.0	EM-50/ERS-49
15.0	EM-180/ERS-49
34.0	EM-180/ERS-57
100.0	EM-210/ERS-68
100.0	EM-215/ERS-68

3. System Inertia/Emergency Stop

In an emergency stop (when power is interrupted), the SSBM will engage and bring the load to a stop. To properly size a brake for this application, load inertia must be known. This is the total inertia of all components which are to be brought to a stop. Adding the inertia of the SSBM Brake is not necessary as it has been included in the selection chart.

With the load inertia and brake RPM known, use the Emergency Stop Selection Chart to verify your brake selection. Simply locate the intersection of your RPM and inertia and make sure you are not above the line for the brake you selected based on Holding Torque (Step 1). If you are above the line, select the brake designed by the next higher line.

Spring-Set Brakes Electrically Released Brakes

Emergency Stop Selection Chart

4. Stopping Time

In some applications, it is desirable to know how fast a brake will bring a load to rest.

The time to stop a load can be determined if the system inertia and brake holding torque are known, according to the following equation:

Where: $\mathrm{t}=\left(\mathrm{WR} \mathrm{R}^{2} \mathrm{~N}\right) /(308 \mathrm{~T})$
$\mathrm{t}=$ time to stop the load in seconds (sec.)
$\mathrm{WR}^{2}=$ system inertia at the brake location in pound-feet squared (ft.lb²)
$\mathrm{N}=$ speed of the brake shaft in revolutions per minute (RPM)
$\mathrm{T}=$ rated brake holding torque in foot-pounds (ft.lb.)

Actual stopping times depend on application variables, which include brake temperature, electrical suppression (see the brake apply time data below), manufacturing tolerances, friction material wear, etc. For this reason, specific stop times should be evaluated under actual application conditions.

If your application has special requirements, please call Warner Electric Technical Support.

5. Select Control

Consult the Controls Section on page 201 for control product overview. The holding torque for a SSBM is not adjustable: therefore, an adjustable torque control is not required.

Special Requirements

SSBM brake modifications, such as special voltages, rear motor mounting, and low torque units are available.

Contact Warner Electric Technical Support at 800-825-9050.

Brake Apply/Release Time (Typical Values)

Model	Brake Release Time (Seconds)		Brake Apply Time (Seconds			
			Suppression Circuit A		Suppression Circuit B	
	24V	90V	24V	90 V	24V	90 V
EM-50/ERS-42	0.05	0.06	0.10	0.10	0.01	0.02
EM-50/ERS-49 EM-180/ERS-49	0.07	0.08	0.15	0.15	0.02	0.02
EM-180/ERS-57	0.11	0.11	0.15	0.15	0.02	0.02
$\begin{aligned} & \hline \text { EM-210/ERS-68 } \\ & \text { EM-215/ERS-68 } \\ & \hline \end{aligned}$	0.16	0.20	0.20	0.20	0.03	0.03

Note: Release and Apply Times are armature engagement and realease only.

Spring-Set Brakes Electrically Released Brakes

SSBM Series-EM/ERS

SIZE 50/180

SIZE 210/215

Dimensions

Size	A	B	C	D
50	5.197	2.072	.625	$3 / 16 \times 3 / 16$
180	5.257	2.132	.875	$3 / 16 \times 3 / 16$
210	7.304	2.619	1.125	$1 / 4 \times 1 / 4$
215	7.804	3.119	1.375	$5 / 16 \times 5 / 16$

For standard NEMA frame dimensions, see page G-3.

ERD Series Electrically Released Brakes

The Inside Story

Continuous duty coil is epoxy-sealed; windings have Class F insulation. Lead wires have standard Class B insulation rating on sizes 005-035. Sizes 060-300 have Class F rating.

Central Torque Adjustment (VAR 02) allows braking torque adjustment down to 50% of nominal rating; ideal for controlling stopping distances.

Compression Springs

 are used to provide balanced armature plate loading.

Friction Disc has double friction surfaces for increased torque in small package size.

Splined Center Hub is steel for wear resistance and available in a variety of bore sizes and keyways.

Friction Flange can easily be modified to suit unique bolt patterns. In special cases, brakes may be mounted directly to the motor without the need for the flange.

Air Gap is factory pre-set and easy to adjust during field maintenance.

ERD Series brakes are designed to safely keep the load in position in the event of a power or motor failure, whether intentional or accidental.

By applying voltage to the ERD, an electromagnetic field is created which causes the armature plate to pull-in against helical compression springs, thus releasing the brake. When power is removed, the springs force the armature to compress the friction carrier against the mounting flange, thus stopping and holding the load. Fully dynamic friction material on the carrier allows for repeated braking cycles from full motor speed with no torque fade.

An optional manual release allows the operator to safely move the load even when no power is available.

Brakes are available in eight different sizes ranging from 3.3 inches to 9.9 inches in diameter with torque capacities from 4 to 220 lb.ft.

Features/Benefits

- Dynamic friction material can stop loads from motor speeds up to 3600 RPM.
- Few moving parts means quiet operation.
- Lead and asbestos free, dynamic friction material is suited for high cycle rates.
- Variety of voltages available.
- Simple DC control (or AC with available rectifiers).
- Low power requirements for energy savings.
- Bi-directional stopping capability.
- Epoxy encapsulated coil for uniform heat transfer.
- Corrosion resistant.
- Low inertia rotating parts.
- Splined hub for quiet dependable operation.
- Metric and inch standard bore sizes.

WARNING For general use in horizontal shaft applications only. For possible vertical applications, contact technical support.

ERD Series Electrically Released Brakes

Applications

As a fail-safe, power-off brake, the ERD family is ideally suited for such load-stopping and holding applications as:

- Conveyors
- Machine Tools
- Robotics
- Medical X-Y Positioning
- Scooters
- Floor Sweepers/Cleaners
- Motor Brakes
- Overhead Doors
- Hoist/Winch
- Fork Lift

Hoist/Winch

The ERD with central torque adjustment can be used to consistently stop the rated load within a fixed distance by dialing-in the proper torque level on each production hoist. The addition of a manual release allows the load to be gradually and safely lowered to the ground in the event of power failure.

Overhead Door

The ERD can be used in conjunction with a photo eye. In this application, whenever the light beam is broken, voltage to the brake is removed. The brake then applies and holds the door in position. Further, the manual release feature allows the operator to open/close the door in the event of a power failure.

Fork Lift

ERD's are used as safety and/or parking brakes on electric fork trucks to hold the vehicle on inclines etc. without the need for manual brake linkage or expensive hydraulic brakes.

ERD Series Electrically Released Brakes

Selection Procedure

Proper fail-safe brake selection involves determining, in order:

1. Static Holding Torque

The ERD brake nominal holding torque should exceed the torque from the load by a minimum safety factor of 2.0.

2. Dynamic Torque

This is determined from the equation:

$$
\mathrm{T}=\frac{5250 \mathrm{PK}}{\mathrm{~N}}
$$

where:
T = Dynamic Torque, ft.lb.
N = Motor Speed, RPM
P = Motor Horsepower
$K=$ Momentary Peak Torque Factor (Typically 2.5)
Once the dynamic torque has been calculated, check the dynamic torque curves (to the right) at the required operating speed to determine the suitable brake.
3. Energy Capacity (Heat Dissipation)

Sizing of the ERD by energy capacity is a function of the cycling frequency (cycles per hour) and the single cycle energy put into the brake as determined from the equation:

$$
E=1.7 W R^{2}\left(\frac{N}{100}\right)^{2}
$$

where:
$\mathrm{E}=$ Single Cycle Energy, ft.Ib.
$\mathrm{WR}^{2}=$ Load Inertia, Ib. ft^{2}
$N=$ Speed, RPM
Applying the energy per cycle with the cycle rate to the energy curve, the brake selection is verified.

Dynamic Torque

Energy Capacity (Heat Dissipation)

ERD Series Electrically Released Brakes

Specifications

	Options	Units	ERD 5	ERD 10	ERD 20	ERD 35	ERD 60	ERD 100	ERD 170	ERD 300
Holding Torque		in.lb.	45	85	175	310	530	890	1500	2650
		ft.lb.	4	7	15	26	44	75	125	221
Maximum Speed		RPM	3600	3600	3600	3600	3600	3600	3600	3600
Rotating Inertia	S	lb.in. 2	0.041	0.137						
	M	lb.in. 2	0.103	0.321	0.957	2.529	7.415	12.472	14.010	29.386
Current Draw		Amps								
	24 VDC		0.83	1.03	1.22	1.61	1.94	2.35	2.73	4.11
	103.5 VDC*		0.21	0.26	0.31	0.41	0.49	0.57	0.69	1.122
	207 VDC*		0.09	0.12	0.14	0.18				
Resistance at Ambient Temperature	24 VDC	Ohms	28.9	23.4	19.6	14.9	12.4	10.22	8.78	5.83
	103.5 VDC*		454	372	310	233	166.2	168.6	139.2	85.63
	207 VDC*		2380	1813	1545	1175				
Weight		lbs	2	4	7	10	14	22	34	57

* The controls designed on pages 130 and 131 provide output voltages to operate these brakes.

Ordering Procedure

Specify:

1. Size: upon sizing criteria, select a size.
$5,10,20,35,60,100,170$, or 300
2. Variation:

0 - No torque adjustment
2 - With central torque adjusting ring
3. Friction Disc:

Metallic carrier is standard.
Thermoplastic carrier is available on sizes 5 \& 10 .
High torque carrier available on sizes 060 through 300.
4. Options:

Dust Cover
Manual Release
5. Friction Flange \& Mounting Screws:

Thick Flange is standard -
Requires Short Screws.
Intermediate Flange available up to Size 35

- Requires Long Screws.

No Mounting Flange is an option -
Requires Long Screws.
6. Voltage:

24 DC is standard.
103.5 (90)* \& 207/215* DC are modifications.
7. Bore Size:

Pilot bored hubs available in all sizes. See table for US-English and Metric bore sizes available by ERD size.
Special bores available on request.
8. Detection Kit - Micro Switch

For Service Manual, request catalog P-229. This option not retrofittable. Requires a 25 piece minimum order for sizes 005 thru 035.

Caution:

These units are designed for dry operation. The brake must be free from oil and grease.

Exceeding the maximum rotation speed listed in the catalog will invalidate the guarantee.

* Coil voltages can vary slightly depending on unit size.

ERD Series Electrically Released Brakes

Product Configuration

3
Friction Disc:
M- Metallic carrier is standard
S- Thermoplastic carrier is available on sizes 5 \& 10
H- High torque carrier available on sizes 060 through 300

4
Options:
0- None
1- Dust Cover
2- Hand Release ${ }^{* *}$
3- Dust Cover and Hand Release

5
Friction Flange and Screw Kits:
0- No Friction Flange
1- Intermediate Friction Flange
2- Thick Friction Flange

Bore Size:
See Bore Size Table

Voltage:

24 DC is standard
103.5 (90)* \& 207/215* DC are
modifications

[^1]
ERD Series Electrically Released Brakes

4 Mounting Options (by customer)

No Friction Flange
Requires long screw kit

Intermediate Friction Flange
Requires long screw kit
Available on sizes 005 thru 035 only.

Thick Friction Flange (Standard)
Requires short screw kit

3
Rotor/Friction Disc

Available in two styles
M - Metallic (Standard)
S - Thermoplastic (Low inertia)
Sizes 005 \& 010 only

- Large thermoplastic bore hubs (Available in sizes 005 and 010 only)
- Large bore metallic disc (Available in sizes 005 thru 035)
- High torque metallic discs (Available in sizes 060 thru 300. Requires lower speed of rotation.)

7 Hub

See Table for hub, bore and keyway size availability by ERD size.

2 Magnet Assembly Variations

VAR 02

- Torque reduction up to 50\% by loosening one nut.
- Available in all sizes.
- Central nut has several "Detents" per turn allowing accurate torque adjustment.

VAR 00
No torque adjustment possible

- Available in all sizes.
- No hand release option available.
- The brake is factory set at the minimum torque (50% of max. torque).

4 Manual Release (Optional)

Automatically returns to "neutral position" when released, thereby restoring holding torque to the brake.

Designed to be retrofitted, except to VAR 00.

4 Dust Cover (Optional)
Available in all sizes.

ERD Series Electrically Released Bralkes

Brakes

VAR 02

VAR 00

Dimensions

ERD		D			L	M
Size	A	Max.	E	K	Max.	+0.000/-0.008
5	$\begin{gathered} 3.307 \\ (84) \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & (12) \\ & \hline \end{aligned}$	$\begin{gathered} 2.835 \\ (72) \\ \hline \end{gathered}$	$\begin{gathered} 1.378 \\ (35) \\ \hline \end{gathered}$	$\begin{gathered} 1.575 \\ (40) \\ \hline \end{gathered}$	$\begin{gathered} 0.709 \\ (18) \\ \hline \end{gathered}$
10	$\begin{aligned} & \hline 4.016 \\ & (102) \end{aligned}$	$\begin{gathered} \hline 0.625 \\ (15) \end{gathered}$	$\begin{gathered} 3.543 \\ (90) \end{gathered}$	$\begin{gathered} 1.614 \\ (41) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.831 \\ & (46.5) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.787 \\ (20) \end{gathered}$
20	$\begin{aligned} & 5.000 \\ & (127) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & (24) \end{aligned}$	$\begin{aligned} & \hline 4.409 \\ & (112) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.870 \\ & (47.5) \end{aligned}$	$\begin{aligned} & \hline 2.185 \\ & (55.5) \\ & \hline \end{aligned}$	$\begin{gathered} 0.787 \\ (20) \\ \hline \end{gathered}$
35	$\begin{aligned} & 5.787 \\ & (147) \\ & \hline \end{aligned}$	$\begin{gathered} 1.125 \\ (28) \\ \hline \end{gathered}$	$\begin{aligned} & 5.197 \\ & (132) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.146 \\ & (54.5) \\ & \hline \end{aligned}$	$\begin{gathered} 2.559 \\ (65) \\ \hline \end{gathered}$	$\begin{gathered} 0.984 \\ (25) \\ \hline \end{gathered}$
60	$\begin{aligned} & \hline 6.378 \\ & (162) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.25 \\ & \text { (32) } \end{aligned}$	$\begin{aligned} & 5.709 \\ & (145) \\ & \hline \end{aligned}$	$\begin{gathered} 2.520 \\ (64) \\ \hline \end{gathered}$	$\begin{aligned} & 2.933 \\ & (74.5) \\ & \hline \end{aligned}$	$\begin{gathered} 1.181 \\ (30) \\ \hline \end{gathered}$
100	$\begin{aligned} & \hline 7.402 \\ & (188) \\ & \hline \end{aligned}$	$\begin{gathered} 1.500 \\ (41) \end{gathered}$	$\begin{aligned} & \hline 6.693 \\ & (170) \\ & \hline \end{aligned}$	$\begin{gathered} 2.795 \\ (71) \\ \hline \end{gathered}$	$\begin{aligned} & 3.209 \\ & (81.5) \\ & \hline \end{aligned}$	$\begin{gathered} 1.181 \\ (30) \\ \hline \end{gathered}$
170	$\begin{aligned} & 8.465 \\ & (215) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.95 \\ & \text { (50) } \end{aligned}$	$\begin{aligned} & \hline 7.717 \\ & (196) \\ & \hline \end{aligned}$	$\begin{gathered} 3.268 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} 3.780 \\ (96) \\ \hline \end{gathered}$	$\begin{gathered} 1.378 \\ (35) \\ \hline \end{gathered}$
300	$\begin{aligned} & 9.921 \\ & (252) \\ & \hline \end{aligned}$	$\begin{gathered} 2.125 \\ (54) \\ \hline \end{gathered}$	$\begin{aligned} & 9.055 \\ & (230) \\ & \hline \end{aligned}$	$\begin{gathered} 3.819 \\ (97) \\ \hline \end{gathered}$	$\begin{aligned} & 4.528 \\ & (115) \\ & \hline \end{aligned}$	$\begin{gathered} 1.575 \\ (40) \\ \hline \end{gathered}$
$\begin{aligned} & \text { ERD } \\ & \text { Size } \end{aligned}$		N	s			w
5		0.079 (2)	$\begin{gathered} 0.748 \\ (19) \\ \hline \end{gathered}$			$\begin{aligned} & 0.925 \\ & (23.5) \\ & \hline \end{aligned}$
10		$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 0.945 \\ (24) \\ \hline \end{gathered}$			$\begin{aligned} & 1.122 \\ & (28.5) \\ & \hline \end{aligned}$
20		$\begin{gathered} 0.157 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 1.378 \\ (35) \\ \hline \end{gathered}$			$\begin{aligned} & 1.594 \\ & (40.5) \\ & \hline \end{aligned}$
35		$\begin{gathered} 0.118 \\ (3) \end{gathered}$	$\begin{gathered} 1.575 \\ (40) \end{gathered}$			$\begin{aligned} & 1.909 \\ & (48.5) \end{aligned}$
60		$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 1.890 \\ (48) \end{gathered}$			$\begin{aligned} & \hline 2.303 \\ & (58.5) \\ & \hline \end{aligned}$
100		$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.047 \\ (52) \\ \hline \end{gathered}$			$\begin{aligned} & \hline 2.500 \\ & (63.5) \\ & \hline \end{aligned}$
170		$\begin{gathered} 0.177 \\ (4.5) \\ \hline \end{gathered}$	$\begin{gathered} 2.362 \\ (60) \\ \hline \end{gathered}$			$\begin{aligned} & 2.894 \\ & (73.5) \\ & \hline \end{aligned}$
300		$\begin{gathered} 0.197 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 2.874 \\ (73) \\ \hline \end{gathered}$			$\begin{aligned} & \hline 3.484 \\ & (88.5) \\ & \hline \end{aligned}$

1. Concentricity of field mounting pilot diameter with rotor mounting shaft within .006 T.I.R.
2. Squareness of field mounting face with rotor mounting shaft within . 006 T.I.R. measured at field mounting bolt circle.
3. Rotor mounting shaft concentric with armature center of rotation within .006 T.I.R.
4. Armature hub pilot diameter to be concentric with armature center of rotation within . 010 T.I.R.
5. If customer does not use a friction flange, the mating surface must be square to their mounting shaft within .006 " and flat within .002 ".

ERD Series Electrically Released Brakes

Friction Plates

Thick friction plate

Dimensions

Intermediate friction plate

All dimensions are nominal, unless otherwise noted.

$\begin{aligned} & \text { ERD } \\ & \text { Size } \end{aligned}$	B	c	E	Bolt Pattern	f Bolt Clearance Holes	F	G	H	h	k Bolt Clearance Holes	J	P	0
5	$\begin{gathered} 3.268 \\ (83) \\ \hline \end{gathered}$	$\begin{gathered} 0.787 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 2.835 \\ (72) \\ \hline \end{gathered}$	3xM4	$\begin{gathered} 3 \times 0.177 \\ 3(4.5) \\ \hline \end{gathered}$	$\begin{gathered} 1.654 \\ (42) \\ \hline \end{gathered}$	$\begin{gathered} 3.425 \\ (87) \\ \hline \end{gathered}$	$\begin{gathered} 1.181 \\ (30) \\ \hline \end{gathered}$	3×0.177 (4.5)	3×0.315 (8)	0.079 (2)		$\begin{gathered} 0.125 \\ (3.2) \\ \hline \end{gathered}$
10	$\begin{aligned} & 3.937 \\ & (100) \\ & \hline \end{aligned}$	$\begin{gathered} 1.181 \\ (30) \\ \hline \end{gathered}$	$\begin{gathered} 3.543 \\ (90) \\ \hline \end{gathered}$	3xM5	$\begin{gathered} 3 \times 0.217 \\ 3(5.5) \\ \hline \end{gathered}$	$\begin{gathered} 2.126 \\ (54) \\ \hline \end{gathered}$	$\begin{aligned} & 4.213 \\ & (107) \\ & \hline \end{aligned}$	$\begin{gathered} 1.772 \\ (45) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.217 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.394 \\ (10) \end{gathered}$	$\begin{gathered} 0.079 \\ \text { (2) } \\ \hline \end{gathered}$		$\begin{gathered} 0.125 \\ (3.2) \\ \hline \end{gathered}$
20	$\begin{aligned} & 4.921 \\ & (125) \\ & \hline \end{aligned}$	$\begin{gathered} 1.575 \\ (40) \\ \hline \end{gathered}$	$\begin{aligned} & 4.409 \\ & (112) \\ & \hline \end{aligned}$	3xM6	$\begin{gathered} 3 \times 0.256 \\ 3(6.5) \\ \hline \end{gathered}$	$\begin{gathered} 2.362 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 5.217 \\ (132.5) \\ \hline \end{gathered}$	$\begin{gathered} 2.205 \\ (56) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.260 \\ (6.5) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.433 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$		$\begin{aligned} & \hline 0.141 \\ & (3.6) \\ & \hline \end{aligned}$
35	$\begin{array}{r} 5.709 \\ (145) \\ \hline \end{array}$	$\begin{array}{r} 1.772 \\ (45) \\ \hline \end{array}$	$\begin{array}{r} 5.197 \\ (132) \\ \hline \end{array}$	3xM6	$\begin{array}{r} 3 \times 0.256 \\ 3(6.5) \\ \hline \end{array}$	$\begin{gathered} 2.755 \\ (70) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6.004 \\ & (152.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 2.441 \\ (62) \\ \hline \end{array}$	$\begin{gathered} 3 \times 0.260 \\ (6.5) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.433 \\ (11) \\ \hline \end{gathered}$	0.118 (3)		$\begin{aligned} & \hline 0.181 \\ & (4.6) \\ & \hline \end{aligned}$
60	$\begin{aligned} & \hline 6.299 \\ & (160) \\ & \hline \end{aligned}$	$\begin{gathered} 2.165 \\ (55) \\ \hline \end{gathered}$	$\begin{aligned} & 5.709 \\ & (145) \end{aligned}$	3xM8	$\begin{gathered} \hline 3 \times 0.335 \\ 3(8.3) \\ \hline \end{gathered}$			$\begin{gathered} 2.913 \\ (74) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.327 \\ (8.3) \end{gathered}$	$\begin{gathered} \hline 3 \times 0.551 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 0.433 \\ (11) \\ \hline \end{gathered}$	
100	$\begin{aligned} & 7.283 \\ & (185) \\ & \hline \end{aligned}$	$\begin{gathered} 2.559 \\ (65) \\ \hline \end{gathered}$	$\begin{aligned} & 6.693 \\ & (170) \\ & \hline \end{aligned}$	3xM8	$\begin{gathered} 3 \times 0.335 \\ 3(8.3) \\ \hline \end{gathered}$			$\begin{gathered} 3.307 \\ (84) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.327 \\ (8.3) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 0.551 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 0.433 \\ (11) \\ \hline \end{gathered}$	
170	$\begin{aligned} & 8.346 \\ & (212) \\ & \hline \end{aligned}$	$\begin{gathered} 2.953 \\ (75) \\ \hline \end{gathered}$	$\begin{aligned} & 7.717 \\ & (196) \\ & \hline \end{aligned}$	6xM8	$\begin{gathered} \hline 6 \times 0.335 \\ 6(8.3) \\ \hline \end{gathered}$			$\begin{array}{r} 3.937 \\ (100) \\ \hline \end{array}$	$\begin{gathered} 3 \times 0.327 \\ (8.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \times 0.551 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 0.118 \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} 0.433 \\ (11) \\ \hline \end{gathered}$	
300	$\begin{aligned} & \hline 9.843 \\ & (250) \\ & \hline \end{aligned}$	$\begin{gathered} 3.543 \\ (90) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9.055 \\ & (230) \\ & \hline \end{aligned}$	6xM10	$\begin{gathered} \hline 6 \times 0.413 \\ 6(10.3) \\ \hline \end{gathered}$			$\begin{aligned} & \hline 4.724 \\ & (120) \\ & \hline \end{aligned}$	$\begin{gathered} 3 \times 0.406 \\ (10.3) \\ \hline \end{gathered}$	6×0.670 (17)	$\begin{gathered} 0.118 \\ \text { (3) } \\ \hline \end{gathered}$	$\begin{gathered} 0.433 \\ (11) \end{gathered}$	

The thick mounting flange provides the proper material and mounting tolerances for the brake. The intermediate mounting flange provides the proper material in applications where flatness, squareness and concentricity requirements are met on the machine already.

Manual Release

Dust Cover

ERD Size	AA	BB	CC	DD	EE	Release Angle
5	3.86	2.09	0.67	3.46	3.46	10°
	(98)	(53)	(17)	(88)	(88)	
10	4.21	2.44	0.71	4.17	4.17	9°
	(107)	(62)	(18)	(106)	(106)	
20	5.08	2.99	0.98	5.20	5.20	8°
	(129)	(76)	(25)	(132)	(132)	
35	5.47	3.39	0.87	5.98	5.98	8°
	(139)	(86)	(22)	(152)	(152)	
60	7.44	4.09	1.57	6.53	6.54	15°
	(189)	(104)	(40)	(166)	(166)	
100	8.07	4.72	1.73	7.56	7.36	15°
	(205)	(120)	(44)	(192)	(187)	
170	9.45	5.51	2.09	8.62	8.78	15°
	(240)	(140)	(53)	(219)	(228)	
300	12.32	6.38	2.40	10.8	10.33	20°
	(313)	(162)	(61)	(256)	(262.5)	

ERD Series Electrically Released Brakes

Hub Bore and Keyway Sizes
U.S. English

Bore in.	Keyway		Available Bores							
	Width	Depth	5	10	20	35	60	100	170	300
3/8	3/32	3/64	Std.							
1/2	1/8	1/16	*	Std.	Std.					
5/8	3/16	3/32	*(Max.)	*	Std.	Std.	Std.	Std.		
3/4	3/16	3/32		*(Max.)	Std.	Std.				
7/8	3/16	3/32			Std. (Max.)	Std.			Std.	
1	1/4	1/8			*(Max.)	Std.	Std.	Std.		Std.
1-3/8	5/16	5/32				*(1-1/8Max.)		Std.	Std.	Std.
1-3/4	3/8	3/16							Std.	Std.

Bore (mm).	Keyway		Available Bores							
	Width	Depth	5	10	20	35	60	100	170	300
8			P.B.							
10			Std.	P.B.	P.B.					
11	4	2	Std.	Std.	Std.					
14	5	2.5	*	Std.	Std.	P.B.	P.B.			
15	5	2.5	*		Std.	Std.		P.B.		
18				*	Std.	Std.				
20	6	3		* (20Max.)	Std.	Std.			P.B.	
22	6	3			Std.	Std.				
24	8				*	Std.				
25	8	3.5				Std.	Std.	Std.		P.B.
28	8	3.5			* (28Max.)	*				
30	8	3.5				* (32Max.)	Std.	Std.		
35	10	4					(32Max.)	Std.	Std.	Std.
40	12	4						Max.	Std.	Std.
45	14	4.5							Std.	Std.
50	14	4.5							Max.	(54 Max.)

Design Considerations/Limitations

1. Check the airgap periodically and reset as required per instructions found on page 4 of the service manual P-229. Inspection interval(s) depend on the frequency of brake application.
2. Check friction material thickness periodically per dimension N (see page 127) and replace when below the minimum shown below.

Inches (mm) millimeters

ERD Size	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 5}$	$\mathbf{6 0}$	$\mathbf{1 0 0}$	$\mathbf{1 7 0}$	$\mathbf{3 0 0}$
Min.	0.009	0.008	0.012	0.009	0.010	0.010	0.012	0.013
Thickness	(0.22)	(0.21)	(0.31)	(0.22)	(0.24)	(0.24)	(0.31)	(0.32)

ERD Control Units

Dimensions

Specifications

	CBC-141-1		CBC-141-2	
Part Number	ACG830A1P1		ACG830A1P2	
Frequency (Hz)	$50 / 60$		$50 / 60$	
Input Voltage	230 VAC	30	115	230
Output Voltage	103.5 VDC	24	103.5	207
Max. Current (A)	1	2	2	2

CBC-141-1: Supply unit with single wave rectification for low current.
CBC-141-2: Supply unit with dual wave rectification for low current.

Dimensions

STD. OCTAL KEYED PLUG

OCTAL SOCKET P/N: 6001-101-001

DIN RAIL MOUNT SOCKET P/N: 6001-101-002

(39.9)

(61)

Specifications

	CBC-801-1	CBC-801-2
Part No.	6001-448-004	6001-448-006
Input Voltage	120 VAC, $50 / 60 \mathrm{~Hz}$	220/240 VAC, 50/60 Hz
Output Voltage	90 VDC, 1.25 A max.	$90 \mathrm{VDC}, 1.25$ A max.
Circuit Protection	Fused 1.6 Amp, 250 V fast-blo	Fused 1.6 Amp, 250 V fast-blo
Ambient Temperature	-23° to $116^{\circ} \mathrm{F}\left(-31^{\circ}\right.$ to $\left.47^{\circ} \mathrm{C}\right)$	
Max. Cycle Rate	Limited by the clutch or brake, variable with	
Switching	Single pole, double throw Minimum contact rating: $10 \mathrm{Amp}, 28$ VDC	VAC inductive
Status Indicator	Red LED indicates brake is energized, Gree	is energized
Mounting	Two versions of octal socket are available: 6001-101-001 foot mount 6001-101-002 DIN rail mount	

All dimensions nominal unless otherwise specified.

ERD Control Units

Dimensions

Specifications

	CBC-450-90	CBC-450-24
Part No.	6006-448-006	6006-448-005
Input Voltage	120/220/240/380/480 VAC	120/220/240/380/480 VAC
Output Voltage	90 VDC	24 VDC
Output Current	1 Amp/Channel 1.2 Amps Total	4 Amps/Channel 4 Amps Total
Auxiliary Supply	12 VDC 250 mA	12 VDC 250 mA
Circuit Protection	Fused 1.5 Amp	Fused 5 Amp
Ambient Temperature	$+32^{\circ}$ to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$	$+32^{\circ}$ to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Status Indicators	Red LED indicates channel is energized.	Red LED indicates channel is energized.
Adjustments	Jumper for single or dual operation.	Jumper for single or dual operation.
Inputs	3 Optically isolated, 10-30 VDC, 3-9 mA for Channel 1, Channel 2 and Channel 2 override (E-stop).	3 Optically isolated, 10-30 VDC, 3-9 mA for Channel 1, Channel 2 and Channel 2 override (E-stop).

ERD Series Electrically Released Brakes

1	ERD005	
	Description	Part Number
2 \& 6	Variation 00-24 VDC	G5UE005A01P1
	Variation 00-103.5 VDC	G5UE005A01P2
	Variation 00-207 VDC	G5UE005A01P3
	Variation 02-24 VDC	G5UE005A21P1
	Variation 02 -103.5 VDC	G5UE005A21P2
	Variation 02-207 VDC	G5UE005A21P3
3	Friction Disc	
	Standard Synthetic Disc	A5UE005B1P1
	Large Bore Synthetic Disc	A5UE005B3P1
	Standard Metallic Disc	A5UE005B9P1
	Large Bore Metallic Disc	A5UE005B8P1
4	Options	
	Hand Release	A5UE005K1P1
	Dust Cover	A5UE005C4P1
5	Friction Flange \& Screw Kit	
	Intermediate Flange	A5UE005C309P2
	Thick Flange	A5UE005C301P1
	Short Screw	A5UE005K2P1
	Long Screw	A5UE005K2P2
7	Hub Bore size	
	Hub Pilot Bore - 8MM	A5UE005C500P1
	Hub Bored W/Keyway - 11MM	A5UE005C500P2
	Hub Bored W/Keyway - 10MM	A5UE005C500P5
	Hub Bored W/O Keyway - 10MM	A5UE005C500P6
	Hub Bored W/Keyway - 3/8"	A5UE005C500P9
	Large Bore Hub W/Keyway - 1/2"	A5UE005C503P6
	Large Bore Hub W/Keyway - 5/8"	A5UE005C503P5
8	Detection Kit	V4NST7
1	ERD010	
	Description	Part Number
2 \& 6	Variation-00-24 VDC	G5UE010A01P1
	Variation-00-103.5 VDC	G5UE010A01P2
	Variation-00-207 VDC	G5UE010A01P3
	Variation 02-24 VDC	G5UE010A21P1
	Variation 02-103.5 VDC	G5UE010A21P2
	Variation 02-207 VDC	G5UE010A21P3
3	Friction Disc	
	Standard Synthetic Disc	A5UE010B1P1
	Large Bore Synthetic Disc	A5UE010B3P1
	Standard Metallic Disc	A5UE010B9P1
	Large Bore Metallic Disc	A5UE010B15P1
	Options	
	Hand Release	A5UE010K1P1
	Dust Cover	A5UE010C4P1
5	Friction Flange \& Screw Kit	
	Intermediate Flange	A5UE010C312P2
	Thick Flange	A5UE010C301P1
	Short Screw	A5UE010K2P1
	Long Screw	A5UE010K2P2
7	Hub Bore size	
	Pilot Bore - 10MM	A5UE010C500P1
	Hub Bored W/Keyway - 1/2"	A5UE010C500P13
	Large Bore Hub W/Keyway - 5/8"	consult factory
	Large Bore Hub W/Keyway - 3/4"	consult factory
8	Detection Kit	V4NST7

ERDO20		
	Description	Part Number
2 \& 6	Variation 00-24 VDC	G5UE020A01P1
	Variation 00-103.5 VDC	G5UE020A01P2
	Variation 00-207 VDC	G5UE020A01P3
	Variation 02-24 VDC	G5UE020A21P1
	Variation 02-103.5 VDC	G5UE020A21P2
	Variation 02 - 207 VDC	G5UE020A21P3
3 Friction Disc		
	Standard Synthetic Disc	N/A
	Large Bore Synthetic Disc	N/A
	Standard Metallic Disc	A5UE020B9P1
	Large Bore Metallic Disc	A5UE020B3P1
4 Options		
	Hand Release	A5UE020K1P1
	Dust Cover	A5UE020C4P1
5 Friction Flange \& Screw Kit		
	Intermediate Flange	A5UE020C308P2
	Thick Flange	A5UE020C301P1
	Short Screw	A5UE020K2P1
	Long Screw	A5UE020K2P2
7 Hub Bore size		
	Pilot Bore - 10MM	A5UE020C500P1
	Hub Bored W/Keyway - 15MM	A5UE020C500P2
	Hub Bored W/Keyway - 20MM	A5UE020C500P3
	Hub Bored W/Keyway - 11MM	A5UE020C500P6
	Hub Bored W/Keyway - 14MM	A5UE020C500P7
	Hub Bored W/Keyway - 1/2"	A5UE020C500P15
	Hub Bored W/Keyway - 5/8"	A5UE020C500P16
	Hub Bored W/Keyway - $3 / 4$ "	A5UE020C500P17
	Hub Bored W/Keyway - 7/8"	A5UE020C500P18
	Large Bore Hub W/Keyway - 1"	consult factory
8	Detection Kit	V4NST7
1 ERD035		
	Description	Part Number
2 \& 6	Variation-00-24 VDC	G5UE035A01P1
	Variation-00-103.5 VDC	G5UE035A01P2
	Variation-00-207 VDC	G5UE035A01P3
	Variation 02-24 VDC	G5UE035A21P1
	Variation 02 - 103.5 VDC	G5UE035A21P2
	Variation 02-207 VDC	G5UE035A21P3
3 Friction Disc		
	Standard Synthetic Disc	N/A
	Large Bore Synthetic Disc	N/A
	Standard Metallic Disc	A5UE035B2P1
	Large Bore Metallic Disc	A5UE035B5P1-NM
4 Options		
	Hand Release	A5UE035K1P1
	Dust Cover	642-0013
	5 Friction Flange \& Screw Kit	
	Intermediate Flange	A5UE035C311P2
	Thick Flange	A5UE035C301P1
	Short Screw	A5UE035K2P1
	Long Screw	A5UE035K2P2
	7 Hub Bore size	
	Pilot Bore Hub - 14MM	A5UE035C500P1
	Hub Bored W/Keyway - 20MM	A5UE035C500P2

ERD Series Electrically Released Brakes

Hub Bored W/Keyway -25MM	A5UE035C500P3	
Hub Bored W/Keyway -15MM	A5UE035C500P7	
Hub Bored W/Keyway -5/8"	A5UE035C503P1	
Hub Bored W/Keyway -3/4"	A5UE035C503P3	
Hub Bored W/Keyway - 7/8"	A5UE035C503P4	
Hub Bored W/Keyway -1"	A5UE035C503P2	
Large Bore Hub W/Keyway - 1-1/8"	consult factory	
$\mathbf{8}$	Detection Kit	V4NST7
Rectifiers Half Wave MCS-141-1 Full Wave MCS-141-2		

	Hub Bored W/Keyway - 5/8"	BT312028398
	Hub Bored W/Keyway - 1 "	BT312028398
	Hub Bored W/Keyway - 1-3/8"	BT312028400
8	Detection Kit	BT212095409
1	ERD170	
	Description	Part Number
2 \& 6	Variation 00-24 VDC	BT212094358
	Variation 00-103.5 VDC	BT212094359
	Variation 00-207 VDC	BT212094360
	Variation 02-24 VDC	BT212094355
	Variation 02 - 103.5 VDC	BT212094356
	Variation 02-207 VDC	BT212094357
3	Friction Disc	
	Standard Metallic Friction Disc (M)	BT212094448
	Metallic Friction Disc (HT)	BT212094329
4	Options	
	Dust Cover	BT312027158
	Hand Release	BT212094522
5	Friction Flange \& Screw Kit	
	Thick Friction Plate	BT312027135
	Short Screw (for Thick Friction Plate)	BT212094350
	Long Screw (for No Friction Plate)	BT212094351
7	Hub Bore Size	
	Pilot Bore Hub - 20MM	BT312027150
	Hub Bored W/Keyway - 35MM	BT312027151
	Hub Bored W/Keyway - 40MM	BT312027152
	Hub Bored W/Keyway - 45MM	BT312027153
	Hub Bored W/Keyway - 7/8"	BT312028401
	Hub Bored W/Keyway - 1-3/8"	BT312028402
	Hub Bored W/Keyway - 1-3/4"	BT312028403
8	Detection Kit	BT212095409
1	ERD300	
	Description	Part Number
2 \& 6	Variation 00-24 VDC	BT212094364
	Variation 00-103.5 VDC	BT212094365
	Variation 00-207 VDC	BT212094366
	Variation 02-24 VDC	BT212094361
	Variation 02 - 103.5 VDC	BT212094362
	Variation 02-207 VDC	BT212094363
3	Friction Disc	
	Standard Metallic Friction Disc (M)	BT212094449
	Metallic Friction Disc (HT)	BT212094334
4	Options	
	Dust Cover	BT312027159
	Hand Release	BT212094536
5	Friction Flange \& Screw Kit	
	Thick Friction Plate	BT312027146
	Short Screw (for Thick Friction Plate)	BT212094353
	Long Screw (for No Friction Plate)	BT212094354
7	Hub Bore Size	
	Pilot Bore Hub - 25MM	BT312027154
	Hub Bored W/Keyway - 35MM	BT312027155
	Hub Bored W/Keyway - 40MM	BT312027156
	Hub Bored W/Keyway - 45MM	BT312027157
	Hub Bored W/Keyway - 1"	BT312028404
	Hub Bored W/Keyway - 1-3/8"	BT312028405
	Hub Bored W/Keyway - 1-3/4"	BT312028406
8	Detection Kit	BT212095409

UniBrake AC Motor Brakes

Warner Electric UNIBRAKE ${ }^{\circledR}$ decelerates or holds loads when power is off

C-Face, Power-Off Brakes

Single C-Face Power-Off Brakes are designed to decelerate or hold inertia loads when the power is turned off. The single C-Face mounts on the non-driven end of a motor. Brakes are available from 3 ft . lb. to 15 ft . lb.

C-Face, Power-Off Brakes with Heavy-Duty Enclosures
Our Single C-Face Power-Off Brake is also available with cast iron housing for applications involving corrosive environments. The heavy-duty housing also includes o-ring seals to create a dust-tight brake. Brakes are available from 3 ft . Ib. to 15 ft . Ib.

Double C-Face, Power-Off Brakes

The Double C-Face Brake is designed for use as a coupler between standard C-Face motors and
C-Face gear reducers.

UNIBRAKE is available to meet the demands of a wide variety of applications

Applications

The motor brakes are commonly used as parking brakes to hold a load in place or as stopping brakes to dynamically decelerate a load.
Applications include:

- Material Handling
- Food Processing
- Machine Tools

UniBrake AC Motor Brakes

Simple design with fewer moving parts means less downtime

Figure 1:
When the motor is 'off', the driven load can be moved without energizing the motor by rotating the manual release lever 90° clockwise which removes the retarding torque from the motor shaft.

Figure 2:
The lever returns to the normal "set" position when the brake is re-energized.

Spring Applied -Power-Off Operation

Warner Electric spring applied motor brakes are designed to decelerate or park inertial loads when the voltage is turned off, either intentionally or accidentally, as in the case of power failure. The friction disc with the hub is coupled to the motor shaft to be braked but is capable of moving axially. When power is off, a spring force clamps the friction disc between a pressure plate and a stationary plate, hence retarding motion. When an AC voltage is applied, the solenoid creates a Direct Acting magnetic force which releases the friction disk without the use of a linkage. This allows the hub and motor shaft to turn freely.

Features

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full rated torque down to 50\%
- Single phase AC coils provide fast engagement and release times and easy wiring.

Mounting

Two styles are available: the single C-Face brake and the double C-Face brake. The single C-Face mounts on the non-driven end of a motor. The C-Face brake is interchangeable with existing brakes and can be used on motors that are modified to accept a brake. The double C-Face brake can be used as a coupler between standard C-Face motors and C-Face gear reducers. All motor brakes are interchangeable with competitive motor brakes.

F Series UniBrakes

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Aluminum Head-Steel Cover

56,000 NEMA 2; 56,100 NEMA 2; 56,300 NEMA 1

Warner Electric Single C-Face Power-Off Brakes are designed to decelerate or hold inertia loads when the power is turned off. The single C-Face mounts on the non-driven end of a motor. Brakes are available from 3 ft . lb. to 15 ft . lb.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50%
- Single-phase AC coils to provide fast release times and easy wiring
- Single C-Face

Brake Part Numbers
Technical Data

Coil Voltage	3 ft . lb. Brakes (1 Disc)	6 ft . lb. Brakes (1 Disc)	$10 \mathrm{ft} . \mathrm{lb}$. Brakes (2 Discs)	15 ft . lb. Brakes (3 Discs)	Current Holding Amps	Current Inrush Amps
5/8 Bore Hub						
115/230, 60 HZ	F51A0321-W	F51A0621-W	F52A0721-W	F53A0821-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51A0324-W	F51A0624-W	F52A0724-W	F53A0824-W	.28/.14	1.94/.97
287/575, 60 HZ	F51A0325-W	F51A0625-W	F52A0725-W	F53A0825-W	.22/.11	1.54/.77
115/230, 50 HZ	F51A0328-W	F51A0628-W	F52A0728-W	F53A0828-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	F51A0329-W	F51A0629-W	F52A0729-W	F53A0829-W	.24/.12	1.76/.88
3/4 Bore Hub						
115/230, 60 HZ	F51B0321-W	F51B0621-W	F52B0721-W	F53B0821-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51B0324-W	F51B0624-W	F52B0724-W	F53B0824-W	.28/.14	1.94/.97
287/575, 60 HZ	F51B0325-W	F51B0625-W	F52B0725-W	F53B0825-W	.22/.11	1.54/.77
115/230, 50 HZ	F51B0328-W	F51B0628-W	F52B0728-W	F53B0828-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	F51B0329-W	F51B0629-W	F52B0729-W	F53B0829-W	.24/.12	1.76/.88
7/8 Bore Hub						
115/230, 60 HZ	F51C0321-W	F51C0621-W	F52C0721-W	F53C0821-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51C0324-W	F51C0624-W	F52C0724-W	F53C0824-W	.28/.14	1.94/.97
287/575, 60 HZ	F51C0325-W	F51C0625-W	F52C0725-W	F53C0825-W	.22/.11	1.54/.77
115/230, 50 HZ	F51C0328-W	F51C0628-W	F52C0728-W	F53C0828-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	F51C0329-W	F51C0629-W	F52C0729-W	F53C0829-W	.24/.12	1.76/.88

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Aluminum Head-Steel Cover 56,000 NEMA 2

UNIBRAKE Interchange

Stearns Part Number 1-056-011-00-BNF	Warner Electric Replacement
1-056-011-00-BOF	F51A0325-W
1-056-011-00-BPF	F51A0321-W
1-056-011-00-BQF	F51A0324-W
1-056-011-00-CNF	F51B0325-W
$1-056-011-00-\mathrm{COF}$	F51B0328-W
1-056-011-00-CPF	F51B0321-W
$1-056-011-00-\mathrm{CQF}$	F51B0324-W
$1-056-011-00-\mathrm{DNF}$	F51C0325-W
$1-056-011-00-\mathrm{DOF}$	F51C0328-W
$1-056-011-00-\mathrm{DPF}$	F51C0321-W
$1-056-011-00-\mathrm{DQF}$	F51C0324-W
$1-056-021-00-\mathrm{BNF}$	F51A0625-W
$1-056-021-00-\mathrm{BOF}$	F51A0628-W
$1-056-021-00-\mathrm{BPF}$	F51A0621-W
$1-056-021-00-\mathrm{BQF}$	F51A0624-W

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-021-00-CNF	F51B0625-W
1-056-021-00-COF	F51B0628-W
1-056-021-00-CPF	F51B0621-W
1-056-021-00-CQF	F51B0624-W
1-056-021-00-DNF	F51C0625-W
1-056-021-00-DOF	F51C0628-W
1-056-021-00-DPF	F51C0621-W
1-056-021-00-DQF	F51C0624-W
1-056-031-00-BNF	F52A0725-W
1-056-031-00-BOF	F52A0728-W
1-056-031-00-BPF	F52A0721-W
1-056-031-00-BQF	F52A0724-W
1-056-031-00-CNF	F52B0725-W
1-056-031-00-COF	F52B0728-W
1-056-031-00-CPF	F52B0721-W
1-056-031-00-CQF	F52B0724-W

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-031-00-DNF	F52C0725-W
1-056-031-00-DOF	F52C0728-W
1-056-031-00-DPF	F52C0721-W
1-056-031-00-DQF	F52C0724-W
1-056-041-00-BNF	F53A0825-W
1-056-041-00-BOF	F53A0828-W
1-056-041-00-BPF	F53A0821-W
1-056-041-00-BQF	F53A0824-W
1-056-041-00-CNF	F53B0825-W
1-056-041-00-COF	F53B0828-W
1-056-041-00-CPF	F53B0821-W
1-056-041-00-CQF	F53B0824-W
1-056-041-00-DNF	F53C0825-W
1-056-041-00-DOF	F53C0828-W
1-056-041-00-DPF	F53C0821-W
1-056-041-00-DQF	F53C0824-W

F Series UniBrakes

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Aluminum Head-Steel Cover 56,100 NEMA 2

Stearns ${ }^{\circledR}$

Warner UNIBRAKE

UNIBRAKE Interchange

Stearns Part Number	Warner Electric Replacement
$1-056-111-00-\mathrm{BNF}$	F51A0325-W
$1-056-111-00-\mathrm{BOF}$	F51A0328-W
$1-056-111-00-\mathrm{BPF}$	F51A0321-W
$1-056-111-00-\mathrm{BQF}$	F51A0324-W
$1-056-111-00-\mathrm{CNF}$	F51B0325-W
$1-056-111-00-\mathrm{COF}$	F51B0328-W
$1-056-111-00-\mathrm{CPF}$	F51B0321-W
$1-056-111-00-\mathrm{CQF}$	F51B0324-W
$1-056-111-00-\mathrm{DNF}$	F51C0325-W
$1-056-111-00-$ DOF	F51C0328-W
$1-056-111-00-\mathrm{DPF}$	F51C0321-W
$1-056-111-00-\mathrm{DQF}$	F51C0324-W
$1-056-121-00-\mathrm{BNF}$	F51A0625-W
$1-056-121-00-B O F$	F51A0628-W
$1-056-121-00-B P F$	F51A0621-W
$1-056-121-00-B Q F$	F51A0624-W

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-121-00-CNF	F51B0625-W
1-056-121-00-COF	F51B0628-W
1-056-121-00-CPF	F51B0621-W
1-056-121-00-CQF	F51B0624-W
1-056-121-00-DNF	F51C0625-W
1-056-121-00-DOF	F51C0628-W
1-056-121-00-DPF	F51C0621-W
1-056-121-00-DQF	F51C0624-W
1-056-131-00-BNF	F52A0725-W
1-056-131-00-BOF	F52A0728-W
1-056-131-00-BPF	F52A0721-W
1-056-131-00-BQF	F52A0724-W
1-056-131-00-CNF	F52B0725-W
1-056-131-00-COF	F52B0728-W
1-056-131-00-CPF	F52B0721-W
1-056-131-00-CQF	F52B0724-W

Stearns Part Number	Warner Electric Replacement
1-056-131-00-DNF	F52C0725-W
1-056-131-00-DOF	F52C0728-W
1-056-131-00-DPF	F52C0721-W
1-056-131-00-DQF	F52C0724-W
1-056-141-00-BNF	F53A0825-W
1-056-141-00-BOF	F53A0828-W
1-056-141-00-BPF	F53A0821-W
1-056-141-00-BQF	F53A0824-W
1-056-141-00-CNF	F53B0825-W
1-056-141-00-COF	F53B0828-W
$1-056-141-00-$ CPF	F53B0821-W
1-056-141-00-CQF	F53B0824-W
1-056-141-00-DNF	F53C0825-W
$1-056-141-00-$ DOF	F53C0828-W
$1-056-141-00-$ DPF	F53C0821-W
$1-056-141-00-$ DQF	F53C0824-W

C-Face AC Rear-Mounted Brakes with NEMA 1 Housing Aluminum Head-Steel Cover 56,300 NEMA 1

Stearns ${ }^{\circledR}$

Warner UNIBRAKE

UNIBRAKE Interchange

Stearns® Part Number	Warner Electric Replacement
1-056-311-00-BNF	F51A0325-W
1-056-311-00-BOF	F51A0328-W
$1-056-311-00-\mathrm{BPF}$	F51A0321-W
$1-056-311-00-\mathrm{BQF}$	F51A0324-W
$1-056-311-00-\mathrm{CNF}$	F51B0325-W
$1-056-311-00-\mathrm{COF}$	F51B0328-W
$1-056-311-00-\mathrm{CPF}$	F51B0321-W
$1-056-311-00-\mathrm{CQF}$	F51B0324-W
$1-056-311-00-\mathrm{DNF}$	F51C0325-W
$1-056-311-00-D O F$	F51C0328-W
$1-056-311-00-\mathrm{DPF}$	F51C0321-W
$1-056-311-00-D Q F$	F51C0324-W
$1-056-321-00-\mathrm{BNF}$	F51A0625-W
$1-056-321-00-B O F$	F51A0628-W
$1-056-321-00-\mathrm{BPF}$	F51A0621-W
$1-056-321-00-B Q F$	F51A0624-W

Stearns Part Number	Warner Electric Replacement
$1-056-321-00-\mathrm{CNF}$	F51B0625-W
$1-056-321-00-\mathrm{COF}$	F51B0628-W
$1-056-321-00-\mathrm{CPF}$	F51B0621-W
$1-056-321-00-\mathrm{CQF}$	F51B0624-W
$1-056-321-00-\mathrm{DNF}$	F51C0625-W
$1-056-321-00-\mathrm{DOF}$	F51C0628-W
$1-056-321-00-\mathrm{DPF}$	F51C0621-W
$1-056-321-00-\mathrm{DQF}$	F51C0624-W
$1-056-331-00-\mathrm{BNF}$	F52A0725-W
$1-056-331-00-\mathrm{BOF}$	F52A0728-W
$1-056-331-00-\mathrm{BPF}$	F52A0721-W
$1-056-331-00-\mathrm{BQF}$	F52A0724-W
$1-056-331-00-\mathrm{CNF}$	F52B0725-W
$1-056-331-00-\mathrm{COF}$	F52B0728-W
$1-056-331-00-\mathrm{CPF}$	F52B0721-W
$1-056-331-00-\mathrm{CQF}$	F52B0724-W

Stearns Part Number	Warner Electric Replacement
1-056-331-00-DNF	F52C0725-W
1-056-331-00-DOF	F52C0728-W
1-056-331-00-DPF	F52C0721-W
1-056-331-00-DQF	F52C0724-W
1-056-341-00-BNF	F53A0825-W
1-056-341-00-BOF	F53A0828-W
$1-056-341-00-B P F$	F53A0821-W
$1-056-341-00-B Q F$	F53A0824-W
$1-056-341-00-C N F$	F53B0825-W
$1-056-341-00-$ COF	F53B0828-W
$1-056-341-00-$ CPF	F53B0821-W
$1-056-341-00-C Q F$	F53B0824-W
$1-056-341-00-D N F$	F53C0825-W
$1-056-341-00-D O F$	F53C0828-W
$1-056-341-00-D P F$	F53C0821-W
$1-056-341-00-D Q F$	F53C0824-W

F Series UniBrakes

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Cast Iron Head-Steel Cover

56,400 NEMA 2

Warner Electric Single C-Face Power-Off Brakes are designed to decelerate or hold inertia loads when the power is turned off. The single C-Face mounts on the non-driven end of a motor. Brakes are available from 3 ft . lb. to 15 ft . lb.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50%
- Single-phase AC coils to provide fast release times and easy wiring
- Single C-Face

Brake Part Numbers
$\left.\begin{array}{|lllll|l}\hline \text { Coil Voltage } & \begin{array}{c}\text { 3 ft. lb. } \\ \text { Brakes } \\ \text { (1 Disc) }\end{array} & \begin{array}{c}\text { 6 ft. lb. } \\ \text { Brakes } \\ \text { (1 Disc) }\end{array} & \begin{array}{c}\text { 10 ft. Ib. } \\ \text { Brakes } \\ \text { (2 Discs) }\end{array} & \begin{array}{c}\text { 15 ft. lb. } \\ \text { Brakes } \\ \text { (3 Discs) }\end{array} & \begin{array}{c}\text { Current } \\ \text { Holding Amps }\end{array}\end{array} \begin{array}{c}\text { Current } \\ \text { Inrush Amps }\end{array}\right]$

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Cast Iron Head-Steel Cover 56,400 NEMA 2

Stearns ${ }^{\circledR}$

Warner UNIBRAKE

UNIBRAKE Interchange

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-411-00-BNF	F51A7325-W
1-056-411-00-BOF	F51A7328-W
1-056-411-00-BPF	F51A7321-W
1-056-411-00-BQF	F51A7324-W
1-056-411-00-CNF	F51B7325-W
1-056-411-00-COF	F51B7328-W
1-056-411-00-CPF	F51B7321-W
1-056-411-00-CQF	F51B7324-W
1-056-411-00-DNF	F51C7325-W
1-056-411-00-DOF	F51C7328-W
1-056-411-00-DPF	F51C7321-W
1-056-411-00-DQF	F51C7324-W
1-056-421-00-BNF	F51A7625-W
1-056-421-00-BOF	F51A7628-W
1-056-421-00-BPF	F51A7621-W
1-056-421-00-BQF	F51A7624-W

Stearns ${ }^{\circledR}$ Part Number	Warner Electric Replacement
1-056-421-00-CNF	F51B7625-W
1-056-421-00-COF	F51B7628-W
1-056-421-00-CPF	F51B7621-W
1-056-421-00-CQF	F51B7624-W
1-056-421-00-DNF	F51C7625-W
1-056-421-00-DOF	F51C7628-W
1-056-421-00-DPF	F51C7621-W
1-056-421-00-DQF	F51C7624-W
1-056-431-00-BNF	F52A7725-W
1-056-431-00-BOF	F52A7728-W
1-056-431-00-BPF	F52A7721-W
1-056-431-00-BQF	F52A7724-W
1-056-431-00-CNF	F52B7725-W
1-056-431-00-COF	F52B7728-W
1-056-431-00-CPF	F52B7721-W
1-056-431-00-CQF	F52B7724-W

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-431-00-DNF	F52C7725-W
1-056-431-00-DOF	F52C7728-W
1-056-431-00-DPF	F52C7721-W
1-056-431-00-DQF	F52C7724-W
1-056-441-00-BNF	F53A7825-W
1-056-441-00-BOF	F53A7828-W
$1-056-441-00-$ BPF	F53A7821-W
$1-056-441-00-B Q F$	F53A7824-W
$1-056-441-00-C N F$	F53B7825-W
$1-056-441-00-$ COF	F53B7828-W
$1-056-441-00-$ CPF	F53B7821-W
$1-056-441-00-C Q F$	F53B7824-W
$1-056-441-00-D N F$	F53C7825-W
$1-056-441-00-D O F$	F53C7828-W
$1-056-441-00-D P F$	F53C7821-W
$1-056-441-00-D Q F$	F53C7824-W

F Series UniBrakes

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Cast Iron Head and Cover

56,200 NEMA 2

Warner Electric Single C-Face Power-Off Brake is also available with cast iron housing for applications involving corrosive environments. Brakes are available from 3 ft . lb. to 15 ft . lb.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50%
- Single-phase AC coils to provide fast release times and easy wiring
- Single C-Face

Brake Part Numbers

Coil Voltage	3 ft . lb. Brakes (1 Disc)	6 ft . lb. Brakes (1 Disc)	10 ft . lb. Brakes (2 Discs)	$15 \mathrm{ft} . \mathrm{lb}$. Brakes (3 Discs)	Current Holding Amps	Current Inrush Amps
5/8 Bore Hub						
115/230, 60 HZ	F51A8311-W	F51A8611-W	F52A8711-W	F53A8811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51A8314-W	F51A8614-W	F52A8714-W	F53A8814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51A8315-W	F51A8615-W	F52A8715-W	F53A8815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51A8318-W	F51A8618-W	F52A8718-W	F53A8818-W	.45/.22	3.27/1.64
230/460, 50 HZ	F51A8319-W	F51A8619-W	F52A8719-W	F53A8819-W	.24/.12	1.76/.88
3/4 Bore Hub						
115/230, 60 HZ	F51B8311-W	F51B8611-W	F52B8711-W	F53B8811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51B8314-W	F51B8614-W	F52B8714-W	F53B8814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51B8315-W	F51B8615-W	F52B8715-W	F53B8815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51B8318-W	F51B8618-W	F52B8718-W	F53B8818-W	.45/.22	3.27/1.64
230/460, 50 HZ	F51B8319-W	F51B8619-W	F52B8719-W	F53B8819-W	.24/.12	1.76/.88
7/8 Bore Hub						
115/230, 60 HZ	F51C8311-W	F51C8611-W	F52C8711-W	F53C8811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51C8314-W	F51C8614-W	F52C8714-W	F53C8814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51C8315-W	F51C8615-W	F52C8715-W	F53C8815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51C8318-W	F51C8618-W	F52C8718-W	F53C8818-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	F51C8319-W	F51C8619-W	F52C8719-W	F53C8819-W	.24/.12	1.76/.88

C-Face AC Rear-Mounted Brakes with NEMA 2 Housing Cast Iron Head and Cover
 56,200 NEMA 2

UNIBRAKE Interchange

Stearns Part Number 1-056-211-00-BNF	Warner Electric Replacement
F51A8315-W	
1-056-211-00-BOF	F51A8318-W
$1-056-211-00-B P F$	F51A8311-W
$1-056-211-00-B Q F$	F51A8314-W
$1-056-211-00-C O F$	F51B8315-W
$1-056-211-00-$ FPF	F51B8318-W
$1-056-211-00-$ CQF	F51B8311-W
$1-056-211-00-D N F$	F51C8315-W
$1-056-211-00-D O F$	F51C8318-W
$1-056-211-00-D P F$	F51C8311-W
$1-056-211-00-D Q F$	F51C8314-W
$1-056-221-00-B N F$	F51A8615-W
$1-056-221-00-B O F$	F51A8618-W
$1-056-221-00-B P F$	F51A8611-W
$1-056-221-00-B Q F$	F51A8614-W

Stearns Part Number	Warner Electric Replacement
$1-056-221-00-\mathrm{CNF}$	F51B8615-W
$1-056-221-00-\mathrm{COF}$	F51B8618-W
$1-056-221-00-\mathrm{CPF}$	F51B8611-W
$1-056-221-00-\mathrm{CQF}$	F51B8614-W
$1-056-221-00-\mathrm{DNF}$	F51C8615-W
$1-056-221-00-\mathrm{DOF}$	F51C8618-W
$1-056-221-00-\mathrm{DPF}$	F51C8611-W
$1-056-221-00-\mathrm{DQF}$	F51C8614-W
$1-056-231-00-\mathrm{BNF}$	F52A8715-W
$1-056-231-00-B O F$	F52A8718-W
$1-056-231-00-\mathrm{BPF}$	F52A8711-W
$1-056-231-00-\mathrm{BQF}$	F52A8714-W
$1-056-231-00-\mathrm{CNF}$	F52B8715-W
$1-056-231-00-\mathrm{COF}$	F52B8718-W
$1-056-231-00-\mathrm{CPF}$	F52B8711-W
$1-056-231-00-C Q F$	F52B8714-W

Stearns Part Number	Warner Electric Replacement
$1-056-231-00-$ DNF	F52C8715-W
$1-056-231-00-$ DOF	F52C8718-W
$1-056-231-00-$ DPF	F52C8711-W
$1-056-231-00-D Q F$	F52C8714-W
$1-056-241-00-B N F$	F53A8815-W
$1-056-241-00-B O F$	F53A8818-W
$1-056-241-00-B P F$	F53A8811-W
$1-056-241-00-B Q F$	F53A8814-W
$1-056-241-00-C N F$	F53B8815-W
$1-056-241-00-C O F$	F53B8818-W
$1-056-241-00-C P F$	F53B8811-W
$1-056-241-00-C Q F$	F53B8814-W
$1-056-241-00-D N F$	F53C8815-W
$1-056-241-00-D O F$	F53C8818-W
$1-056-241-00-D P F$	F53C8811-W
$1-056-241-00-D Q F$	F53C8814-W

F Series UniBrakes

C-Face AC Rear-Mounted Brakes with NEMA 4 Housing Cast Iron Head and Cover

56,200 NEMA 4

Warner Electric Single C-Face Power-Off Brake is also available with cast iron housing for applications involving corrosive environments. The heavy-duty housing also includes o-ring seals to create a dusttight brake. Brakes are available from 3 ft . lb. to 15 ft . lb.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50\%
- Single-phase AC coils to provide fast release times and easy wiring
- Single C-Face

Brake Part Numbers

Technical Data

Coil Voltage	3 ft . lb. Brakes (1 Disc)	6 ft . lb. Brakes (1 Disc)	$10 \mathrm{ft} . \mathrm{lb}$. Brakes (2 Discs)	$15 \mathrm{ft} . \mathrm{lb}$. Brakes (3 Discs)	Current Holding Amps	Current Inrush Amps
5/8 Bore Hub						
115/230, 60 HZ	F51A1311-W	F51A1611-W	F52A1711-W	F53A1811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51A1314-W	F51A1614-W	F52A1714-W	F53A1814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51A1315-W	F51A1615-W	F52A1715-W	F53A1815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51A1318-W	F51A1618-W	F52A1718-W	F53A1818-W	.45/. 22	3.27/1.64
230/460, 50 HZ	F51A1319-W	F51A1619-W	F52A1719-W	F53A1819-W	.24/.12	1.76/.88
3/4 Bore Hub						
115/230, 60 HZ	F51B1311-W	F51B1611-W	F52B1711-W	F53B1811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51B1314-W	F51B1614-W	F52B1714-W	F53B1814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51B1315-W	F51B1615-W	F52B1715-W	F53B1815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51B1318-W	F51B1618-W	F52B1718-W	F53B1818-W	.45/.22	3.27/1.64
230/460, 50 HZ	F51B1319-W	F51B1619-W	F52B1719-W	F53B1819-W	.24/.12	1.76/.88
7/8 Bore Hub						
115/230, 60 HZ	F51C1311-W	F51C1611-W	F52C1711-W	F53C1811-W	.50/.25	3.66/1.83
230/460, 60 HZ	F51C1314-W	F51C1614-W	F52C1714-W	F53C1814-W	.28/.14	1.94/.97
287/575, 60 HZ	F51C1315-W	F51C1615-W	F52C1715-W	F53C1815-W	.22/.11	1.54/.77
115/230, 50 HZ	F51C1318-W	F51C1618-W	F52C1718-W	F53C1818-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	F51C1319-W	F51C1619-W	F52C1719-W	F53C1819-W	.24/.12	1.76/.88

C-Face AC Rear-Mounted Brakes with NEMA 4 Housing Cast Iron Head and Cover
 56,200 NEMA 4

Stearns ${ }^{\circledR}$

UNIBRAKE Interchange

Stearns Part Number	Warner Electric Replacement
$1-056-212-00-B N F$	F51A1315-W
$1-056-212-00-B O F$	F51A1318-W
$1-056-212-00-B P F$	F51A1311-W
$1-056-212-00-B Q F$	F51A1314-W
$1-056-212-00-C N F$	F51B1315-W
$1-056-212-00-C O F$	F51B1318-W
$1-056-212-00-C P F$	F51B1311-W
$1-056-212-00-C Q F$	F51B1314-W
$1-056-212-00-D N F$	F51C1315-W
$1-056-212-00-D O F$	F51C1318-W
$1-056-212-00-D P F$	F51C1311-W
$1-056-212-00-D Q F$	F51C1314-W
$1-056-222-00-B N F$	F51A1615-W
$1-056-222-00-B O F$	F51A1618-W
$1-056-222-00-B P F$	F51A1611-W
$1-056-222-00-B Q F$	F51A1614-W

Stearns Part Number	Warner Electric Replacement
$1-056-222-00-\mathrm{CNF}$	F51B1615-W
$1-056-222-00-\mathrm{COF}$	F51B1618-W
$1-056-222-00-\mathrm{CPF}$	F51B1611-W
$1-056-222-00-\mathrm{CQF}$	F51B1614-W
$1-056-222-00-\mathrm{DNF}$	F51C1615-W
$1-056-222-00-$ DOF	F51C1618-W
$1-056-222-00-\mathrm{DPF}$	F51C1611-W
$1-056-222-00-D Q F$	F51C1614-W
$1-056-232-00-\mathrm{BNF}$	F52A1715-W
$1-056-232-00-B O F$	F52A1718-W
$1-056-232-00-B P F$	F52A1711-W
$1-056-232-00-B Q F$	F52A1714-W
$1-056-232-00-C N F$	F52B1715-W
$1-056-232-00-C O F$	F52B1718-W
$1-056-232-00-C P F$	F52B1711-W
$1-056-232-00-C Q F$	F52B1714-W

Stearns Part Number	Warner Electric Replacement
1-056-232-00-DNF	F52C1715-W
1-056-232-00-DOF	F52C1718-W
$1-056-232-00-$ DPF	F52C1711-W
$1-056-232-00-D Q F$	F52C1714-W
$1-056-242-00-B N F$	F53A1815-W
$1-056-242-00-B O F$	F53A1818-W
$1-056-242-00-B P F$	F53A1811-W
$1-056-242-00-B Q F$	F53A1814-W
$1-056-242-00-C N F$	F53B1815-W
$1-056-242-00-C O F$	F53B1818-W
$1-056-242-00-C P F$	F53B1811-W
$1-056-242-00-C Q F$	F53B1814-W
$1-056-242-00-D N F$	F53C1815-W
$1-056-242-00-D O F$	F53C1818-W
$1-056-242-00-D P F$	F53C1811-W
$1-056-242-00-D Q F$	F53C1814-W

M Series UniBrakes

Double C-Face AC Coupler Brakes with NEMA 2 Housing Aluminum Head and Cover
 56,700 NEMA 2

The Double C-Face brake is designed for use as a coupler between standard C-Face motors and C-Face gear reducers.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50%
- Single-phase AC coils to provide fast release times and easy wiring

Brake Part Numbers

Technical Data

Coil Voltage	3 ft . lb. Brakes (1 Disc)	6 ft . lb. Brakes (1 Disc)	$10 \mathrm{ft} . \mathrm{lb}$. Brakes (2 Discs)	Current Holding Amps	Current Inrush Amps
5/8 Bore Shaft and Hub (56C)					
115/230, 60 HZ	M51A0321-W	M51A0621-W	M52A0721-W	.50/.25	3.66/1.83
230/460, 60 HZ	M51A0324-W	M51A0624-W	M52A0724-W	.28/.14	1.94/.97
287/575, 60 HZ	M51A0325-W	M51A0625-W	M52A0725-W	.22/.11	1.54/.77
115/230, 50 HZ	M51A0328-W	M51A0628-W	M52A0728-W	. $45 / .22$	3.27/1.64
230/460, 50 HZ	M51A0329-W	M51A0629-W	M52A0729-W	.24/.12	1.76/.88
7/8 Bore Shaft and Hub (145TC)					
115/230, 60 HZ	M51C0321-W	M51C0621-W	M52C0721-W	.50/.25	3.66/1.83
230/460, 60 HZ	M51C0324-W	M51C0624-W	M52C0724-W	.28/.14	1.94/.97
287/575, 60 HZ	M51C0325-W	M51C0625-W	M52C0725-W	.22/.11	1.54/.77
115/230, 50 HZ	M51C0328-W	M51C0628-W	M52C0728-W	.45/.22	3.27/1.64
230/460, 50 HZ	M51C0329-W	M51C0629-W	M52C0729-W	.24/.12	1.76/.88

Double C-Face AC Coupler Brakes with NEMA 2 Housing Aluminum Head and Cover
 56,700 NEMA 2

Stearns ${ }^{\circledR}$

(4) Mounting Holes and 3/8-16 Studs on a 5.875 Dia. B.C.

Warner
UNIBRAKE

Output Shaft
with $3 / 6$ Square Key
$\times 1.25$ Long

UNIBRAKE Interchange

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-711-05-NF	M51A0325-W
1-056-711-05-OF	M51A0328-W
1-056-711-05-PF	M51A0321-W
$1-056-711-05-\mathrm{QF}$	$\mathrm{M} 51 \mathrm{~A} 0324-\mathrm{W}$
$1-056-711-07-\mathrm{NF}$	$\mathrm{M} 51 \mathrm{C} 0325-\mathrm{W}$
$1-056-711-07-\mathrm{OF}$	$\mathrm{M} 51 \mathrm{C} 0328-\mathrm{W}$
$1-056-711-07-\mathrm{PF}$	$\mathrm{M} 51 \mathrm{C} 0321-\mathrm{W}$
$1-056-711-07-\mathrm{QF}$	$\mathrm{M} 51 \mathrm{C} 0324-\mathrm{W}$

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-721-05-NF	M51A0625-W
1-056-721-05-OF	M51A0628-W
1-056-721-05-PF	M51A0621-W
1-056-721-05-QF	M51A0624-W
1-056-721-07-NF	M51C0625-W
1-056-721-07-OF	M51C0628-W
1-056-721-07-PF	M51C0621-W
1-056-721-07-QF	M51C0624-W

Stearns ${ }^{\oplus}$ Part Number $1-056-731-05-N F$	Warner Electric Replacement
$1-056-731-05-\mathrm{OF}$	$\mathrm{M} 52 \mathrm{~A} 0725-\mathrm{W}$
$1-056-731-05-\mathrm{PF}$	$\mathrm{M} 52 \mathrm{~A} 0728-\mathrm{W}$
$1-056-731-05-\mathrm{QF}$	$\mathrm{M} 52 \mathrm{~A} 0724-\mathrm{W}$
$1-056-731-07-\mathrm{NF}$	$\mathrm{M} 52 \mathrm{C} 0725-\mathrm{W}$
$1-056-731-07-\mathrm{OF}$	$\mathrm{M} 52 \mathrm{C} 0728-\mathrm{W}$
$1-056-731-07-\mathrm{PF}$	$\mathrm{M} 52 \mathrm{C} 0721-\mathrm{W}$
$1-056-731-07-\mathrm{QF}$	$\mathrm{M} 52 \mathrm{C} 0724-\mathrm{W}$

M Series UniBrakes

Double C-Face DC Coupler Brakes with NEMA 2 Housing Aluminum Head and Cover
 56,700 NEMA 2

The Double C-Face Brake is designed for use as a coupler between standard C-Face motors and C-Face gear reducers.

Features:

- External manual release lever
- Totally enclosed construction
- Torque adjustable from full-rated torque down to 50\%
- DC coils to provide fast release times and easy wiring

Brake Part Numbers
Technical Data

Coil Voltage	3 ft . lb. Brakes (1 Disc)	6 ft . lb. Brakes (2 Disc)	$10 \mathrm{ft} . \mathrm{lb}$. Brakes (3 Discs)	Current Holding Amps	Current Inrush Amps
5/8 Bore Shaft and Hub (56C)					
24 VDC	M51A032Y-W	M52A062Y-W	M53A072Y-W	. 91	26.4
90 VDC	M51A032X-W	M52A062X-W	M53A072X-W	. 25	365
7/8 Bore Shaft and Hub (145TC)					
24 VDC	M51C032Y-W	M52C062Y-W	M53C072Y-W	. 91	26.4
90 VDC	M51C032X-W	M52C062X-W	M53C072X-W	. 25	365

Double C-Face DC Coupler Brakes with NEMA 2 Housing Aluminum Head and Cover 56,700 NEMA 2

Warner UNIBRAKE

UNIBRAKE Interchange

Stearns ${ }^{\oplus}$ Part Number	Warner Electric Replacement
1-056-711-05-UF	M51A032Y-W
1-056-711-05-XF	M51A032X-W
1-056-711-07-UF	M51C032Y-W
1-056-711-07-XF	M51C032X-W
$1-056-721-05-\mathrm{UF}$	$\mathrm{M} 52 A 062 \mathrm{Y}-\mathrm{W}$
$1-056-721-05-\mathrm{XF}$	$\mathrm{M} 52 A 062 \mathrm{X}-\mathrm{W}$
$1-056-721-07-\mathrm{UF}$	$\mathrm{M} 52 \mathrm{C062Y-W}$
$1-056-721-07-\mathrm{XF}$	$\mathrm{M} 52 \mathrm{C} 062 \mathrm{X}-\mathrm{W}$
$1-056-731-05-\mathrm{UF}$	$\mathrm{M} 53 \mathrm{A072Y-W}$
$1-056-731-05-\mathrm{XF}$	$\mathrm{M} 53 \mathrm{A072X-W}$
$1-056-731-07-\mathrm{UF}$	$\mathrm{M} 53 \mathrm{C} 072 \mathrm{Y}-\mathrm{W}$
$1-056-731-07-\mathrm{XF}$	$\mathrm{M} 53 \mathrm{C} 072 \mathrm{X}-\mathrm{W}$

UNIBRAKES

F-Series AC Rear-Mounted Brakes

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	$6,10, \& 15 \mathrm{ft} . \mathrm{lb}$.	79060-07-A	1
		$3 \mathrm{ft} . \mathrm{lb}$.	79060-07-B	1
3	Coil and Pole Assembly	275/550V 60HZ	79137-18-G	1
		230/460V 60HZ	79137-18-J	1
		115/230V 60HZ	79137-18-K	1
		200/400V 60HZ	79137-18-L	1
		208/416V 50HZ	79137-18-M	1
		115/230V 50HZ	79137-18-N	1
		230/460V 50HZ	79137-18-P	1
5	Hub Assembly	5/8 Bore	58D22	1
		3/4 Bore	58D23	1
		7/8 Bore	58D24	1
13	Brake Disc (Individual)		327213	1
$\begin{aligned} & 13,14 \\ & 15,16 \end{aligned}$	Disc Plate Kit (Includes Disc \& Pressure Plates)	3 \& 6 ft.lb. (1 disc)	327212-1	1
		$10 \mathrm{ft} . \mathrm{lb} .(2 \mathrm{discs})$	327212-2	1
		15 ft .lb. (3 discs)	327212-3	1

Item 2

Item 3

Item 5
Disc Plate Kit Items 13-14-15-16

Service Parts

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	$6,10, \& 15 \mathrm{ft} . \mathrm{lb}$.	79060-07-A	1
		$3 \mathrm{ft.lb}$.	79060-07-B	1
3	Coil and Pole Assembly	275/550V 60HZ	79137-18-G	1
		230/460V 60HZ	79137-18-J	1
		115/230V 60HZ	79137-18-K	1
		200/400V 60HZ	79137-18-L	1
		208/416V 50HZ	79137-18-M	1
		115/230V 50HZ	79137-18-N	1
		230/460V 50HZ	79137-18-P	1
5	Hub Assembly	5/8 Bore	58D22	1
		3/4 Bore	58D23	1
		7/8 Bore	58D24	1
13	Brake Disc (Individual)		327213	1
$\begin{aligned} & 13,14 \\ & 15,16 \end{aligned}$	Disc Plate Kit (Includes Disc \& Pressure Plates)	3 \& 6 ft.lb. (1 disc)	327212-4	1
		$10 \mathrm{ft.lb} .(2$ discs)	327212-5	1
		$15 \mathrm{ft.lb} .(3 \mathrm{discs})$	327212-6	1

Item	Description
$\mathbf{1}$	Brake Head Machined
$\mathbf{4}$	$10-32 \times 5 / 16$ Slotted Hex Head With Split LW
$\mathbf{6}$	$3 / 16 "$ SQR X 1" Key
$\mathbf{7}$	Brake Cover
$\mathbf{8}$	Stud Extension
$\mathbf{9}$	10-32 Hex Nut
$\mathbf{1 0}$	Insulating Sleeve
$\mathbf{1 1}$	$3 / 8-16 \times 2-1 / 2 "$ Socket Cap Screw
$\mathbf{1 2}$	$3 / 8 "$ Hi-Collar Lock Washer
$\mathbf{1 7}$	$6-32 \times 1 / 4 "$ Hex Washer Head Screw
$\mathbf{1 8}$	Nameplate
$\mathbf{1 9}$	Instruction Label

Item 5
Disc Plate Kit Items 13-14-15-16

Service Parts

Notes

Packaged Performance Products Service Parts for Electrically Released Brakes

Spring-Set Brakes
ERS Series Static Engaged Brakes . N/A
ERD Series Dual Purpose Engagement Brakes . N/A
UNIBRAKES AC Motor Brakes . SP-2

When replacing components in clutches and brakes several guidelines are appropriate. In all cases, when replacing worn friction surfaces both the components need to be replaced. In many cases, the splined hubs should be inspected and replaced if worn.

Common Replacement Practices:

Electrically released brakes

- On all Electrically released brakes the magnet and armature are only sold as a matched set and must be replaced as a set.

A note on burnishing:

When new friction surfaces are installed it will be necessary to burnish the unit prior to returning to full production rates. Burnishing is the act of wearing in the friction faces to ensure full engagement and therefore full torque. Burnishing is achieved by simply cycling the unit under less than full load (machine empty, if possible). Most units will achieve full torque in less than 100 cycles. Refer to the service manual for more details.

UNIBRAKES

F-Series AC Rear-Mounted Brakes

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	$6,10, \& 15 \mathrm{ft} . \mathrm{lb}$.	79060-07-A	1
		$3 \mathrm{ft.lb}$.	79060-07-B	1
3	Coil and Pole Assembly	275/550V 60HZ	79137-18-G	1
		230/460V 60HZ	79137-18-J	1
		115/230V 60HZ	79137-18-K	1
		200/400V 60HZ	79137-18-L	1
		208/416V 50HZ	79137-18-M	1
		115/230V 50HZ	79137-18-N	1
		230/460V 50HZ	79137-18-P	1
5	Hub Assembly	5/8 Bore	58D22	1
		3/4 Bore	58D23	1
		7/8 Bore	58D24	1
16	Brake Disc (Individual)		327213	1
$\begin{aligned} & 16,17 \\ & 18,19 \end{aligned}$	Disc Plate Kit (Includes Disc \& Pressure Plates)	3 \& 6 ft.lb. (1 disc)	327212-4	1
		$10 \mathrm{ft.lb}$. (2 discs)	327212-5	1
		15 ft.lb. (3 discs)	327212-6	1

Item	Description
$\mathbf{1}$	Brake Head Machined
$\mathbf{4}$	$10-32 \times 5 / 16 ~ S l o t t e d ~ H e x ~ H e a d ~$ With Split LW
$\mathbf{6}$	3/16" SQR X 1" Key
$\mathbf{7}$	Brake Cover
$\mathbf{8}$	Cover Plug
$\mathbf{9}$	Stud Extension
$\mathbf{1 0}$	5/16" Split Lock Washer
$\mathbf{1 1}$	10-32 X 5/8 Socket Head Cap Screw
$\mathbf{1 2}$	\#10 Flat Washer
$\mathbf{1 3}$	Insulating Sleeve
$\mathbf{1 4}$	3/8-16 X 2-1/2" Socket Cap Screw
$\mathbf{1 5}$	3/8" Hi-Collar Lock Washer
$\mathbf{2 0}$	9 Gage Escutcheon Pin
$\mathbf{2 1}$	Nameplate
$\mathbf{2 2}$	Instruction Label

Item 2

Item 3

Item 5

Service Parts

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	6, 10, \& $15 \mathrm{ft.lb}$.	79060-07-A	1
		$3 \mathrm{ft} . \mathrm{lb}$.	79060-07-B	1
3	Coil and Pole Assembly	275/550V 60HZ	79137-18-G	1
		230/460V 60HZ	79137-18-J	1
		115/230V 60HZ	79137-18-K	1
		200/400V 60HZ	79137-18-L	1
		208/416V 50HZ	79137-18-M	1
		115/230V 50HZ	79137-18-N	1
		230/460V 50HZ	79137-18-P	1
5	Hub Assembly	5/8 Bore	58D29	1
		3/4 Bore	58D30	1
		7/8 Bore	58D31	1
16	Brake Disc (Individual)		327213	1
$\begin{aligned} & 16,17 \\ & 18,19 \end{aligned}$	Disc Plate Kit (Includes Disc \& Pressure Plates)	3 \& 6 ft.lb. (1 disc)	327212-4	1
		10 ft .lb. (2 discs)	327212-5	1
		15 ft.lb. (3 discs)	327212-6	1

Item	Description
$\mathbf{1}$	Brake Head Machined
$\mathbf{4}$	$10-32 \times 5 / 16 ~ S l o t t e d ~ H e x ~ H e a d ~$ With Split LW
$\mathbf{6}$	3/16" SQR X 1" Key
$\mathbf{7}$	Brake Cover
$\mathbf{8}$	Brake Cover Gasket
$\mathbf{9}$	Cover Plug
$\mathbf{1 0}$	Stud Extension
$\mathbf{1 1}$	$5 / 16 "$ Split Lock Washer
$\mathbf{1 2}$	10-32 X 5/8" SS Pan Head With O-Ring
$\mathbf{1 3}$	Insulating Sleeve
$\mathbf{1 4}$	3/8-16 X 2-1/2" Socket Cap Screw
$\mathbf{1 5}$	3/8" Hi-Collar Lock Washer
$\mathbf{2 0}$	9 Gage Escutcheon Pin
$\mathbf{2 1}$	Nameplate
$\mathbf{2 2}$	Instruction Label

Item 2
Item 3

Item 5

Disc Plate Kit Items 13-14-15-16

Service Parts

UNIBRAKES

M-Series AC Coupler Brakes

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	$6,10, \& 15 \mathrm{ft} . \mathrm{lb}$.	79060-07-A	1
		$3 \mathrm{ft.lb}$.	79060-07-B	1
3	Coil and Pole Assembly	275/550V 60HZ	79137-18-G	1
		230/460V 60HZ	79137-18-J	1
		115/230V 60HZ	79137-18-K	1
		200/400V 60HZ	79137-18-L	1
		208/416V 50HZ	79137-18-M	1
		115/230V 50HZ	79137-18-N	1
		230/460V 50HZ	79137-18-P	1
21	Brake Disc (Individual)		327213	1
21,22	Disc Plate Kit	3 \& 6 ft.lb. (1 disc)	327212-1	1
23,24	(Includes Disc \& Pressure Plates)	$10 \mathrm{ft.lb} .(2$ discs)	327212-2	1

Item	Description
$\mathbf{1}$	Brake Head Machined
$\mathbf{4}$	Brake Cover Assembly
$\mathbf{5}$	$1 / 4-20 \times 1-1 / 2^{\prime \prime}$ Hex Cap Screw
$\mathbf{6}$	$1 / 4^{\prime \prime}$ Split Lock Washer
$\mathbf{7}$	$1 / 4-20$ Hex Nut
$\mathbf{8}$	$3 / 8-16 \times 2-1 / 4^{\prime \prime}$ Socket Cap Screw
$\mathbf{9}$	$3 / 8^{\prime \prime}$ Hi-Collar Lock Washer
$\mathbf{1 0}$	$1 / 4-20 \times 3 / 8$ Slotted Round Head Screw
$\mathbf{1 1}$	Anti Rattle Spacer
$\mathbf{1 2}$	Lead Clip
$\mathbf{1 3}$	Window Cover Plate
$\mathbf{1 5}$	$6-32 \times 1 / 4^{\prime \prime}$ Hex Washer Head Screw
$\mathbf{1 6}$	$1 / 2^{\prime \prime}$ Plug Button
$\mathbf{1 9}$	$3 / 16^{\prime \prime}$ SQR X 2-3/4" Key
$\mathbf{2 0}$	3/16" SQR X 1-1/4" Key
$\mathbf{2 5}$	Insulating Sleeve
$\mathbf{2 6}$	Name Plate
$\mathbf{2 7}$	Instruction Label - Gap
$\mathbf{2 8}$	Instruction Label - Wire

Item 2

Item 3

Disc Plate Kit Items 13-14-15-16

Component Parts

Item	Description		Part No.	Qty.
2	Support \& Armature Plate Assembly	3, 6, \& $10 \mathrm{ft.lb}$.	79060-07-A	1
3	Coil and Pole Assembly	24 VDC	327208	1
		90 VDC	327209	1
21	Brake Disc (Individual)		327213	1
$\begin{aligned} & 21,22 \\ & 23,24 \end{aligned}$	Disc Plate Kit (Includes Disc \& Pressure Plates)	3 ft.lb. (1 disc)	327212-1	1
		6 ft.lb. (2 discs)	327212-2	1
		$10 \mathrm{ft.lb}$. (3 discs)	327212-3	1

Item	Description
$\mathbf{1}$	Brake Head Machined
$\mathbf{4}$	Brake Cover Assembly
$\mathbf{5}$	$1 / 4-20 \times 1-1 / 2^{\prime \prime}$ Hex Cap Screw
$\mathbf{6}$	$1 / 4 "$ Split Lock Washer
$\mathbf{7}$	$1 / 4-20$ Hex Nut
$\mathbf{8}$	$3 / 8-16 \times 2-1 / 4 "$ Socket Cap Screw
$\mathbf{9}$	3/8" Hi-Collar Lock Washer
$\mathbf{1 0}$	$1 / 4-20 \times 3 / 8$ Slotted Round Head Screw
$\mathbf{1 1}$	Anti Rattle Spacer
$\mathbf{1 2}$	Lead Clip
$\mathbf{1 3}$	Window Cover Plate
$\mathbf{1 5}$	6-32 X 1/4" Hex Washer Head Screw
$\mathbf{1 6}$	1/2" Plug Button
$\mathbf{1 9}$	3/16" SQR X 2-3/4" Key
$\mathbf{2 0}$	3/16" SQR X 1-1/4" Key
$\mathbf{2 5}$	Insulating Sleeve
$\mathbf{2 6}$	Name Plate
$\mathbf{2 7}$	Instruction Label - Gap
$\mathbf{2 8}$	Instruction Label - Wire

Item 2

Item 3

Disc Plate Kit Items 13-14-15-16

Service Parts

Notes

General Engineering Data

Mechanical Data Application Engineering

Ordering Information / Standard NEMA Frame Dimensions G-3
Mechanical Data / Dynamic Torque G-4
Mechanical Data / Rotational Speed G-6
Mechanical Data / Clutch Field Restraining Devices. G-7
Electrical Data / Coil Ratings G-8
Electrical Data / Installation Procedure G-11
Electrical Data / Coil Suppression \& Clutch/Brake Overlap G-12
Electrical Data / Overexcitation G-13

Standard NEMA Frame Dimensions Ordering Information

Specifications

Module Size	NEMA Frame Size	AH	AJ	AK	BB	BF	ES	R	\mathbf{S}	U
50	$56 C / 48 Y$	2.06	5.875	4.500	.16 MAX	$3 / 8-16 \mathrm{UNC}$	1.41 MIN	0.517	0.188	0.625
100	$56 \mathrm{C} / 48 \mathrm{Y}$	2.06	5.875	4.500	.16 MAX	$3 / 8-16 \mathrm{UNC}$	1.41 MIN	0.517	0.188	0.625
180	$143 T \mathrm{C} / 145 \mathrm{TC}$	2.12	5.875	4.500	.16 MAX	$3 / 8-16 \mathrm{UNC}$	1.41 MIN	0.771	0.188	0.875
210	$182 \mathrm{TC} / 184 \mathrm{TC}$	2.62	7.250	8.500	.25 MIN	$1 / 2-13 \mathrm{UNC}$	1.78 MIN	0.986	0.250	1.125
215	$213 \mathrm{TC} / 215 \mathrm{TC}$	3.12	7.250	8.500	.25 MIN	$1 / 2-13 \mathrm{UNC}$	2.41 MIN	1.201	0.312	1.375

Note: Warner Electric Modules are designed to comply with standard NEMA frame dimensions for mounting. Reference to each particular frame size is given in the individual selection tables for each type of Warner Electric module.

Mechanical Data Dynamic Torque

NOTES:

Speed difference means the difference in speed between one friction face and the other at the moment of engagement. The intersection of the top curve and the speed difference is the maximum torque produced by the unit. When both friction faces are engaged and rotating at the same speed, the unit is said to be locked-in and produces the maximum static torque (zero speed difference).

The \% lines indicate the percentage of full voltage being used. Example: If 90 volt unit runs at 45 volts, use the 50% line.

Average Torque $=$ Dynamic Torque at $1 / 2$ operating speed. Example: If operating speed is 1800, use dynamic torque at 900.

Size 400 Maximum Speed 4,500 rpm Static Torque 270 lb./in.

Speed Difference in Hundreds of R.P.M.

Size 170
Maximum Speed 10,000 rpm Static Torque $15 \mathrm{lb} . / \mathrm{in}$.

Size 500-SF Maximum Speed 4,000 rpm

[^2]
Mechanical Data Dynamic Torque

Size 1000-MB Maximum Speed 3,600 rpm Static Torque $160 \mathrm{lb} . / \mathrm{ft}$.

Size 1225

Maximum Speed 3,000 rpm Static Torque 260 lb./ft.
Size 1000
Maximum Speed 3,600 rpm Electro-Pack 3,000 rpm Static Torque $240 \mathrm{lb} . / \mathrm{ft}$.

Size 1225-MB

Mechanical Data Rotational Speed

Rotational Speed

Rotational speed of a clutch or brake is an important consideration when selecting a unit for a particular application. Numerous factors must be considered, such as the maximum rated speed of the clutch/ brake unit, the dynamic torque required, the heat dissipation needed, the effect of speed on wear rate, and torque stability at very low speeds. Each of these issues are separate, and sometimes interrelated, but always important in selecting the right product for an application.

Maximum RPM Rating

The most important rotational speed consideration is the maximum rated RPM capability of a unit. DO NOT exceed this rating. Exceeding the maximum RPM of a unit may cause personal injury and/or machine damage. Maximum rated speeds are based on the structural integrity of the rotating components and associated shaft and bearing capabilities. If the RPM rating is exceeded, structural failure may occur, or the unit may experience premature bearing failure and/or premature friction material wear out.

Dynamic Torque

When determining the correct size clutch/ brake for an application, dynamic torque at the highest slip speed is often the determining factor. As you can see by reviewing the dynamic torque curves for different units as shown starting on page G-4, dynamic clutch/brake torque usually decreases with higher speeds. As slip RPM increases, the coefficient of friction of a unit decreases, causing a decrease in dynamic torque availability. Be careful to consider this when selecting the appropriate unit size needed.

Heat Dissipation

Heat dissipation is inversely related to dynamic torque. As RPM increases, the heat dissipation ability of a unit increases. When an armature is rotating, the heat dissipation rate is proportional to the aerodynamic fan effect of the rotating armature. The faster the armature rotates, the greater the heat dissipation. This is illustrated with a typical catalog curve as shown in Figure 1. It's interesting to note that, at zero RPM, the unit still has some heat dissipation capability. This is due to convection and radiation, but is usually not an important consideration.

Figure 1: Typical Heat Dissipation Characteristics

Wear Rate

The wear rate of friction surfaces is dependent on the clamping pressure of the mating surfaces as well as the surface velocity between the wearing surfaces. Many variables are involved in predicting wear life, of which RPM is probably the most influential. Typically, the wear rate will increase directly with the rubbing velocity distance. Another way of stating this is the higher the relative engagement speeds of two rotating parts, the longer they are allowed to slip against each other and the faster the wear rate.

Low Speed Operation

The effect of low speed useage should also be considered in applications. Performance of clutch/brake units at less than 100 RPM may be very different than at higher RPM. This is due to "burnish" characteristics of friction surfaces.

Wear In

"Burnish" is the wear in, or mating of two surfaces. When new, these surfaces have manufacturing features which include roughness and waviness. When these surfaces come into initial contact, only the high spots actually meet. See Figure 2. This results in only a small surface area in contact, while the non-contact surface area is "air." The result is low torque. As the mating surfaces continue to engage and slip against each other, the high spots are worn down and more surface area is in contact, thus increasing torque capability. This wear in period, or burnish, typically occurs in the first few hundred cycles of a clutch/brake's life. Faster slip speeds and higher loads mean fewer cycles needed to complete the burnish process. For applications where the speed is less than 100 RPM, the required application torque

Figure 2: Unburnished Contact Areas
should be doubled to compensate for the low speed "burnish" that the unit experiences. A low speed burnish will require many cycles before full torque and stability are achieved. For example, if an application is determined to need 20 ft.lbs. of static torque, an SF-400 clutch could be selected. But, if the application is only 100 RPM or less, then an SF-500 unit should be the choice to compensate for the low RPM useage, as indicated on the selection chart found on page G-4.

Careful consideration of rotating speeds will help the selection process of an application. Follow these guidelines and the proper clutch/brake selected will provide troublefree operation.

Mechanical Data Clutch Field Restraining Devices

Many Warner Electric clutch assemblies have a bearing mounted stationery field. By design the bearing maintains its proper position between the field and rotor making it easy for the cutomer to mount the field-rotor assembly. However, the bearing has a slight drag which tends to make the field rotate if not restrained. And, since the field has lead wires attached, it must be restrained to prevent rotation and pulling of these wires. To counteract this rotational force, the field has a "torque tab" to which the customer must attach an appropriate anti-rotational restraint.

A few hints regarding proper torque tab restraints are in order. First and foremost, it is important to recognize that the force to be overcome is very small and the tab should not be restrained in any manner which will preload the bearing. For example, if the clutch is mounted with the back of the field adjacent to a rigid machine member the customer should not attach a capscrew tightly between the tab and the machine member. This may pull the tab back against the rigid member as shown in Figure 1 and preload the bearing. The recommended methods are illustrated in Figures 2, 3, and 4. The method selected is primarily a matter of customer preference or convenience.

Figure 1:
Rigid member

Figure 3:
Pin in Hole
Loosely
(Preferred)

Figure 2:
Rigid Member with Slot Straddling Tab (Preferred)

Figure 4:
Flexible Strap (Preferred)

Electrical Data Coill Ratings

EC/EB-375	EC			EB		
Voltage - DC	90	24	6	90	24	6
Resistance @ $20^{\circ} \mathrm{C}$ - Ohms	453.5	29.3	2.10	446.8	29.3	1.96
Current - Amperes	.198	.82	2.85	.201	.82	3.07
Watts	17	20	17	18	20	18
Coil Build-up - milliseconds	62	60	59	50	60	52
Coil Decay - milliseconds	13	14	15	8	14	10

EC/EB-475	EC			EB		
Voltage - DC	90	24	6	90	24	6
Resistance @ 20 ${ }^{\circ}$ C Ohms	368.9	37.8	2.32	443.1	28.8	2.05
Current - Amperes	.244	.64	2.58	.203	.88	2.93
Watts	22	15	16	18	21	18
Coil Build-up - milliseconds	92	91	90	80	75	70
Coil Decay - milliseconds	18	17	16	8	9	9

EC/EB-650		EC		EB		
Voltage - DC	90	24	6	90	24	6
Resistance @ 20 ${ }^{\circ} \mathrm{C}$ - Ohms	225	17.7	1.16	257.2	18.3	1.24
Current - Amperes	.4	1.36	5.19	.35	1.3	4.84
Watts	36	33	31	32	31	29
Coil Build-up - milliseconds	120	115	110	112	108	105
Coil Decay - milliseconds	20	20	20	12	13	14

FB/ER-375, 475, 650	FB-375		FB-475			FB-650	
Voltage - DC	90	24	90	24	90	24	
Resistance @ 20 0° C Ohms	446	29	310	22	235	16	
Current - Amperes	.201	.822	.300	1.09	.380	1.426	
Watts	18	19	27	26	34	34	
Coil Build-up - milliseconds	40	40	80	80	90	90	
Coil Decay - milliseconds	5	10	8	10	10	10	

ER-825, 1225	ER-825		ER-1225
Voltage - DC	90	24	$35-75$
Resistance @ $20^{\circ} \mathrm{C}$ - Ohms	305	21.5	235
Current - Amperes	.29	1.1	.383
Watts	26	27	35
Coil Build-up - milliseconds	400	-	700
Coil Decay - milliseconds	20	-	20

ATC, ATTC, ATB, ATTB-115	ATC			ATB		
Voltage - DC	6	24	90	6	24	90
Resistance @ $20^{\circ} \mathrm{C}$ - Ohms	1.02	16.5	182	1.02	16.5	182
Current - Amperes	5.91	1.46	.50	5.91	1.46	.50
Watts	35.4	35	44.6	35.4	35	44.6
Coil Build-up - milliseconds	145	145	145	150	150	150
Coil Decay - milliseconds	40	40	40	45	45	45

EC/EB-825		EC	EB			
Voltage - DC	90	24	6	90	24	6
Resistance @ 20 ${ }^{\circ} \mathrm{C}$ - Ohms	221	20.9	1.098	223.3	20.4	1.27
Current - Amperes	.407	1.15	5.464	.4	1.18	4.74
Watts	37	28	33	36	28	28
Coil Build-up - milliseconds	225	200	180	170	170	170
Coil Decay - milliseconds	130	122	115	80	75	70

EC/EB-1000	EC			EB		
Voltage - DC	90	24	6	90	24	6
Resistance @ 20 ${ }^{\circ} \mathrm{C}$ - Ohms	248.7	19.7	1.23	248.7	19.7	1.23
Current - Amperes	.36	1.22	4.87	.36	1.22	4.87
Watts	33	29	29	33	29	29
Coil Build-up - milliseconds	250	235	220	235	220	205
Coil Decay - milliseconds	70	75	80	70	75	80
EC/EB-1225		EC			EB	
Voltage - DC	90	24	6	90	24	6
Resistance @ 20 ${ }^{\circ} \mathrm{C}$ - Ohms	207.3	15.1	1.04	261.7	22.3	1.33
Current - Amperes	.43	1.59	5.79	.34	1.08	4.5
Watts	39	38	35	31	26	27
Coil Build-up - milliseconds	500	490	480	460	445	435
Coil Decay - milliseconds	220	230	240	190	160	140

ATC, ATTC, ATB, ATTB-25	ATC			ATB		
Voltage - DC	6	24	90	6	24	90
Resistance @ $20^{\circ} \mathrm{C}$ - Ohms	1.37	20.2	290	1.37	20.2	290
Current - Amperes	4.38	1.19	.31	4.38	1.19	.31
Watts	26.3	28.6	27.9	26.3	28.6	27.9
Coil Build-up - milliseconds	145	145	145	145	145	145
Coil Decay - milliseconds	8	8	8	9	9	9

ATC, ATTC, ATB, ATTB-55	ATC			ATB		
Voltage - DC	6	24	90	6	24	90
Resistance @ $20^{\circ} \mathrm{C}$ - Ohms	1.21	19.6	230	1.21	19.6	230
Current - Amperes	4.96	1.22	.39	4.96	1.22	.39
Watts	29.8	29.3	35.2	29.8	29.3	35.2
Coil Build-up - milliseconds	200	200	200	210	210	210
Coil Decay - milliseconds	20	20	20	35	35	35

Electrical Data Coill Ratings

UM/EM/UMFB/EMFB		Clutch	UM/EM Brake	Clutch	UM/EM Brake	Clutch	UM/EM Brake	UMFB/ EMFB Brake	UMFB/ EMFB Brake
Voltage - DC		90	90	24	24	6	6	24	90
Resistance (ohms)	EM-50	452	429	31.8	28.8	1.9	1.9	28.8	429
	EM-100	392	392	26.7	26.7	1.8	1.8	21.7	308
	EM-180	392	392	26.7	26.7	1.8	1.8	21.7	308
	EM-210/215	248	248	17.9	17.9	1.22	1.22	13.3	205
Amperes	EM-50	. 20	. 21	. 76	. 83	3.2	3.2	. 83	. 21
	EM-100	. 23	. 23	. 90	. 90	3.3	3.3	1.1	. 29
	EM-180	. 23	. 23	. 90	. 90	3.3	3.3	1.1	. 29
	EM-210/215	. 36	. 36	1.3	1.3	4.9	4.9	1.8	. 38
Watts	EM-50	18	19	19	20	20	20	20	19
	EM-100	21	21	22	22	20	20	27	27
	EM-180	21	21	22	22	20	20	27	27
	EM-210/215	33	33	32	32	30	30	43	34
Build-up (millisecond)	EM-50	52	53	52	53	52	53	40	40
	EM-100	72	75	72	75	72	70	80	80
	EM-180	72	75	72	75	72	70	80	80
	EM-210/215	120	100	120	100	110	100	90	90
Decay (millisecond)	EM-50	6	5	6	5	6	5	5	5
	EM-100	12	10	12	10	12	10	8	8
	EM-180	12	10	12	10	12	10	8	8
	EM-210/215	20	10	20	10	20	10	10	10

Electrical Data Coill Ratings

NOTES: Build-up time equals current to approximately 90% of steady state value and flux to 90%. Decay time equals current to approximately 10% of steady state value and flux to 10%. Approximately because current leads or lags flux by a small amount.

Electrical Data Installation Procedure

Recommended Electrical

Installation Procedure for Warner Electric Clutches and Brakes

Warner Electric clutches and brakes conform to UL (Underwriters Laboratories) requirements. All packaged products come with conduit boxes or are enclosed in housings with provision for electrical conduit connection. All sizes 400 and larger SF clutch fields and brake magnets accept UL conforming conduit boxes avaliable from Warner Electric.

The National Electrical Code (NEC) requires that conductors subject to physical damage be adequately protected. When electrical conduit is used, a minimum of $12^{\prime \prime}$ of $1 / 2^{\prime \prime}$ flexible conduit is to be used between each brake and/or clutch and its box. This construction will prevent improper bearing loading in bearing mounted units and ease field and magnet assembly and disassembly.

Refer to the information below for proper installation practices and wire sizes.

Notwithstanding the above recommendations, all electrical installations should conform to NEC and/ or other governing electrical codes.

Recommended wire size versus maximum distance

Wire Size AWG	Fractional Horsepower Sizes 170-400			Integral Horsepower Sizes 500-1525		
	Distance (feet)			Distance (feet)		
	6 Volt	24 Volt	90 Volt	6 Volt	24 Volt	90 Volt
18	20	280	1000	4	65	700
16	30	430		6	95	
14	50	720		10	160	
12	75	720		10	160	
10	125			25	400	
8	200			40		

General construction wire type MTW or THW recommended.
\#6 terminal screws (size 400 and smaller) are to be torqued to 15 in.lb.
\#8 terminal screws (size 500 and larger) are to be torqued to $20 \mathrm{in} . \mathrm{lb}$.

Electrical Data Coill Suppression \& Clutch/Brake Overlap

Users of electric clutch and brake systems are sometimes concerned that a clutch and brake will oppose each other or "overlap"during switching, i.e., when the clutch is switched off and the brake is switched on, or vice versa. This concern relates primarily to dual armature type clutch/brakes similar to the Warner Electric Electro Module product line, as compared to shuttle armature clutch/ brakes.

In use, Warner Electric clutches and brakes are not subject to overlap when Zener diode coil suppression techniques are applied to the clutch/brake control. All Warner Electric clutch/brake controls use Zener diode suppression to eliminate any overlap situations.

The charts below graphically display current decay of the clutch and current rise of the brake with Zener diode and with straight diode suppression. In Chart 1, which shows brake and clutch operation with Zener diode suppression, the "Overlap Area" below the intersection of the brake and clutch current lines shows potential for the devices to fight one another. But this

Brake Engagement with Zener Diode Suppression

Clutch current decay and brake current rise overlap, but the brake armature is not engaged until well past the overlap point. Note that the "blip" in the brake current trace coincides with the sharp decline in the "speed" trace, indicating brake armature engagement at that point.
intersection occurs at an extremely low current level and the armature Autogap ${ }^{\circledR}$ springs keep the friction surfaces of the brake armature and magnet separate at such low currents. Even though there is the appearance of a minor clutch/ brake overlap in this instance, the brake armature has not yet contacted the brake magnet. Chart 2 shows a much larger overlap area since straight diode suppression is used in this circuit. Clutch current has not decayed fully as the brake is engaged and the load is brought to zero speed.
Clutch and brake coils are inductors. Inductance is the electrical equivalent to mechanical inertia and an energized coil dissipates its energy when turned "off." Upon removal of power, voltage across an inductor reverses and current continues to flow in the same direction until the energy is fully dissipated. Without suppression in the control circuit, an arc can result from this potentially very large reverse voltage which can damage the electrical switching contacts.

Consequently, Zener diode suppression circuitry, by limiting the reverse voltage to

Brake Engagement with Straight Diode Suppression
Clutch current decay is much slower than with Zener diode suppression as shown in Chart 1, greatly increasing the overlap area. The currrent level in the clutch coil is much higher at the point of brake engagement than with Zener diode suppression.
a sufficiently high but safe level, has two major benefits:

- Hastens coil decay
- Protects the switching contacts

The schematics below show circuits with no suppression and both straight diode and Zener diode suppression.
The rapid coil decay of Zener diode suppression lets users enjoy the major advantages which dual armatures have over single, "shuttle" armatures. These include:

- Better heat dissipation - greater area to give off heat and more "off" time.
- Longer life - two armatures absorb wear.
- Armature Autogap® self adjusting for the life of the unit
- Enhanced repeatability and controllability with the use of a light preload spring to keep the armatures in light contact with their mating surfaces, eliminating armature movement time and reducing noise and spline wear. Warner Electric utilizes this preload spring in some packaged clutch/brake models including ceramic EPs and Unimodules and Smooth Start Unimodules.

$$
\begin{aligned}
\mathrm{VAC} & =\mathrm{AC} \text { power source } \\
\mathrm{SW} & =\text { Clutch selector switch } \\
\mathrm{CL} & =\text { Clutch } \\
\mathrm{CNTL} & =\text { Control module }
\end{aligned}
$$

Overexcitation is a technique which makes a clutch or brake engage faster and have greatly improved starting and stopping accuracy. It involves applying over voltage to the clutch or brake coil to reduce current build up time, thereby reducing the magnetizing time.
The graphs below show current rise and shaft speed for an identical system using a Warner Electric EP-400 clutch/brake both with and without overexcitaton. The effect of overexcitation is to reduce the time needed to achieve full current and thereby reduce the time required to achieve full speed with a clutch or zero speed with a brake. In the example below, "time to start" is approximate-
ly 70 ms without overexcitation. This is reduced to 30 ms when overexcitation is applied. This time is comparable to the coil buildup times stated on page G-10. The "time to stop" has been similarly reduced; the nominally excited system requires about 110 ms to stop the load, while this is accomplished in only 50 ms with overexcitation.

Overexcitation does not increase torque. Rather, the reduction in start-stop times comes from reduced coil current build up times (or "time to current"). For many common industrial applications, the reduction in "time to speed" and "time to stop" is one half when using overexcitation.

The use of overexcitation on a clutch/ brake system does not increase system wear. In fact, the clutch/brake wear rate may be reduced because slippage and energy dissipation is marginally reduced in the clutch/brake. Compliance in the drivetrain may absorb some of the start/ stop inertia or wear may be observed in other drivetrain components. Whenever overexcitation is used, adequate coil suppression must be employed. Please refer to "Coil Suppression and Clutch/ Brake Overlap" on page G-12.

Chart 1

Without Overexcitation

Current/speed trace of EP400 clutch/brake being run through a single stop/start cycle. Note that 110 milliseconds is required to stop from the time the clutch coil is de-energized and the brake coil is energized. At the 200 milliseconds point on the graph the clutch coil is energized and the load is at speed 70 milliseconds later. Note that the coil current is still increasing after the load is at full speed.

Chart 2

With Overexcitation

Current/speed trace of EP400 clutch/brake being run through a single stop/start cycle. With overexcitation, both brake and clutch coil currents build much faster with concurrent reductions in both stop and start times, when compared with Chart 1.

Notes

Email, Mail or FAX to:

Warner Electric
Brake and Clutch Application Engineering
449 Gardner Street, South Beloit, Illinois 61080
info@warnerelectric.com • Phone number: 800-825-9050 • FAX number: 815-389-2582

Per min. \qquad Per hour \qquad Per day

Notes

Clutch and Brake Controls

Contents

Warner Electric's electronic controls are designed to provide simple setup and maximum performance when used with electric clutches and brakes. Our controls offer a range of functions from on-off to torque control to overexcitation.

Selection

Many parameters beyond function can impact control selection. Warner Electric produces a variety of control options to suit numerous application requirements. Control selection parameters include:

- Mounting Location - Panel or conduit box mounting
- Switching - Relay switching of A.C. or D.C. lines or solid state switching
- Output Voltage - Controls are available for 6, 24 and 90 VDC clutch/brake coils
- Input Voltage - Controls with input power transformers are available for connection to high voltage mains.

If your application requires something special, please call us. We will be happy to provide solutions.

Clutch and Brake Controls CTL-2
On-Off Controls
CBC-100 . CTL-4
CBC-150 . CTL-4
CBC-160 . CTL-5
CBC-801 . CTL-6
CBC-802 . CTL-7

Adjustable Torque Controls
MCS-103-1 . CTL-8
MCS-805-1 . CTL-9
MCS-805-2 . CTL-9
CBC-300 . CTL-10
CBC-500 .
CBC-550 . CTL-14
CBC-1825R . CTL-16

Overexcitation Controls
CBC-700 . CTL-18
CBC-750 . CTL-20
Appendix . CTL-22
Questions \& Answers . CTL-23
Ordering Information . CTL-24

Clutch and Brake Controls

Functions

On-Off (Basic start-stop)

Many applications are controlled by energizing the clutches and brakes with their rated D.C. voltages. Warner Electric controls are available with various mounting, input voltage and switching options.

Adjustable Torque

(Soft start-stop)

The torque transmitted by a clutch or brake is proportional to the coil current. Warner Electric offers several products that provide torque control for smooth and repeatable starts and stops.

Adjustable Accel-Decel

(Soft start-stop with full torque)
Warner Electric offers a control that allows for adjustment of the acceleration and deceleration time ramps to achieve a repeatable soft start or stop while still allowing for full torque.

Overexcitation

(Rapid cycling)

The clutch/brake speed of response can be increased for improved accuracy and performance through overexcitation, which is the application of a short high voltage pulse to provide nearly instantaneous torque.

Clutch and Brake Controls

Model Number	No. of Channels	Torque Control Channels		D.c. Output Voltages	OverExcitation	Customer Supplied Switching Options	Description	Page Number
$\begin{aligned} & \hline \text { CBC-100-1 } \\ & \text { CBC-100-2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{gathered} 120 \\ 220 / 240 \end{gathered}$	90	No	Relay A.C.	Single channel control to mount inside standard conduit box	CTL-4
$\begin{aligned} & \hline \text { CBC-150-1 } \\ & \text { CBC-150-2 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{gathered} 120 \\ 220 / 240 \end{gathered}$	90	No	Relay A.C.	Dual channel control for clutch/brake to mount inside module conduit box	CTL-4
$\begin{aligned} & \hline \text { CBC-160-1 } \\ & \text { CBC-160-2 } \end{aligned}$	1	1	$\begin{gathered} 120 \\ 220 / 240 \end{gathered}$	90	No	Relay A.C.	Single channel control with torque adjust for module electrically released brakes	CTL-5
$\begin{aligned} & \hline \text { CBC-801-1 } \\ & \text { CBC-801-2 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	No	$\begin{gathered} 120 \\ 220 / 240 \end{gathered}$	90	No	Relay D.C.	Dual channel control for 2 clutches and/or brakes	CTL-6
CBC-802	2	No	120	90	No	Transistor or Relay D.C.	Dual channel control with transistor switching	CTL-7
MCS-103-1	2	1	120	90	No	Relay D.C.	Dual channel control with torque adjust for one channel	CTL-8
$\begin{aligned} & \text { MCS-805-1 } \\ & \text { MCS-805-2 } \end{aligned}$	1	1	120/240	35-75	No	Relay D.C.	Single adjustable channel control for use with ER-1225 brake.	CTL-9
$\begin{gathered} \text { CBC-300 } \\ \text { CBC-300-1 } \end{gathered}$	2	2	120	90	No	Transistor or Relay D.C.	Dual channel adjustable current control	$\begin{gathered} \text { CTL-10 to } \\ \text { CTL-11 } \end{gathered}$
CBC-500-90	2	2	120	90	No		Dual channel control for two	
CBC-500-24	2	2	24-30	24	No	Transistor or	clutches and/or brakes with	CTL-12 to
CBC-550-90	2	2	120/220/240/380/480	90	No	Relay D.C.	two torque adjust channels;	CTL-15
CBC-550-24	2	2	120/220/240/380/480	24	No		Emergency stop input	
CBC-1825-R	2	2	120	90	No	Transistor or Relay D.C.	Dual channel adjustable time ramp with short circuit protection	$\begin{aligned} & \text { CTL-16 to } \\ & \text { CTL-17 } \end{aligned}$
$\begin{aligned} & \text { CBC-700-90 } \\ & \text { CBC-700-24 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	No	$\begin{gathered} 120 \\ 24-28 \end{gathered}$	$\begin{aligned} & 90 \\ & 24 \end{aligned}$	Yes	Transistor or Relay D.C.	Dual channel compact overexcitation control for 24 or 90 volt clutches and brakes	$\begin{gathered} \text { CTL-18 to } \\ \text { CTL-19 } \end{gathered}$
CBC-750-6	2	2	120/220/240	6	Yes	Transistor, Relay D.C. or Triac A.C.	Dual channel full function overexcitation control; provides input/output logic, torque adjustable current and remote inputs	CTL-20 to CTL-21

CBC-100/CBC-150 On-Off Controls

Integral/Conduit Box Mounted Controls

The CBC-100 and CBC-150 series are UL listed, conduit box mounted controls for 90 volt clutches and brakes. Models are available for either 120 VAC or 220/240 VAC input.

CBC-100 series
Single unit capacity
The CBC-100 mounts inside a standard Warner Electric conduit box and includes rectification and suppression circuits.
. ©(4) us

- Compact
- Single channel
- Mounts inside conduit box

CBC-150 series

Dual channel capacity

The CBC-150 replaces the cover on the standard module conduit box (part no. 5370-101-042). Provides rectification and suppression for two devices. Green LED indicates power to clutch. Red LED indicates power to brake.

- c(UL)
- Dual channel
- Replaces the cover on the module conduit box

Specifications

	CBC-100-1	CBC-100-2	CBC-150-1	CBC-150-2
Part No.	6003-448-101	6003-448-103	6004-448-001	6004-448-002
Input	120 VAC	220/240 VAC	120 VAC	220/240 VAC
	$50 / 60 \mathrm{~Hz}$			
Output	90 VDC full wave rectified . 8 Amp max.	90 VDC half wave . 8 Amp	90 VDC full wave rectified Dual . 8 Amp	90 VDC half wave Dual .8 Amp
Ambient Temperatures	-20° to $113^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$			
Switching	External to control, accomplished on A.C. line using relay or triac.			
	SPST	SPST	SPDT	SPDT
Solid State (maximum leakage current <2 mA)	140 VAC, 1 Amp min.	280 VAC, 1 Amp min.	140 VAC, 2 Amp min.	280 VAC, 2 Amp min.
Electromechanical	$120 \text { VAC, }$ 1 Amp min.	$240 \text { VAC, }$ 1 Amp min.	$120 \text { VAC, }$ 1 Amp min.	$240 \text { VAC, }$ 1 Amp min.

Connection diagrams

CBC-100-1, -2

CBC-160 On-Off Controls

Integral/Electrically Released Motor Brake Controls

CBC-160

The CBC-160 series clutch/brake controls provide a single 90 VDC adjustable output for use with any clutch/ brake unit. The adjustable output will provide consistent and repeatable release for Warner Electric's 90 VDC permanent magnet electrically released brakes. The CBC-160 mounts as the cover on the standard module conduit box (part number: 5370-101-042).

CBC-160-1

The 160-1 accommodates 120 volts A.C. motors.

- (니) us
- Adjustable 30-100 VDC
- LED indicator
- 120 volt A.C. input

CBC-160-2

The power to the 160-2 control can come from either a 230 volt or 460 volt A.C. motor. Customer-provided switching is accomplished through the motor starter on the A.C. input. This allows convenient retrofit of springset style motor brakes and inexpensive installation of new applications.

- c (VL) us
- Adjustable 30-100 VDC
- Power from motor
- Easy retrofit
- 230/460 motors

Dimensions

All dimensions nominal unless otherwise specified.

Specifications

	CBC-160-1	CBC-160-2
Part No.	6013-448-001	6013-448-002
Input	120 VAC, $50 / 60 \mathrm{~Hz}$	220/240 VAC, 60 Hz , 1 Phase, 100 VA max.
Status Indicator	Red LED indicates power to the brake	$-$
Output	Single Channel, 30- 0.8 Amps maximum	100 VDC half-wave rectified nominal,
Ambient Temperatures	0° to $122^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to	$\left.50^{\circ} \mathrm{C}\right)$
Switching	Accomplished throug relay or triac	gh motor starter or on A.C. line using

Connection Diagrams

WYE Connected Motor

(MOTOR TERMINALS)

DELTA Connected Motor

CBC-801 On-Off Controls

Plug-in Octal Socket Power Supplies

The CBC-801 is a basic on-off power supply that provides full voltage to a 90 volt clutch or brake and is activated by an external switch. This type of power supply is sufficient for many clutch/brake applications.

CBC-801 series

Multi-unit capacity
The CBC-801 is a plug-in power supply which is used with an octal socket. The wiring connections are made at the socket. The CBC-801 will operate two units separately-or simultaneously. Octal socket is purchased separately.

Dimensions

- ©(4) ${ }^{\text {us }}$
- For basic on-off operation
- Wiring connections made at octal socket
- Arc suppression circuitry extends switch life
- Fused for overload protection
- LED output indicators
- DIN rail mountable

Specifications

	CBC-801-1	CBC-801-2
Part No.	$6001-448-004$	$6001-448-006$
Input Voltage	$120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	$220 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Output	$90 \mathrm{VDC}, 1.25 \mathrm{~A} \mathrm{max}$.	
Circuit Protection	Fused 1.6 Amp, 250 V fast-blo	
Ambient Temperature	-23° to 116 $\mathrm{F}\left(-31^{\circ}\right.$ to 47 $\left.{ }^{\circ} \mathrm{C}\right)$	Limited by the clutch or brake, variable with application
Max. Cycle Rate	Single pole, double throw Minimum contact rating: 10 Amp, 28 VDC resistive or 10 Amp, 120 VAC inductive	
Status Indicator	Red LED indicates brake is energized, Green LED indicates clutch is energized	
Mounting	Two versions of octal socket are available: $6001-101-001$ foot mount $6001-101-002 ~ D I N ~ r a i l ~ m o u n t ~$	

CBC-802 On-Off Controls

Plug-in Octal Socket Power Supplies

CBC-802

PLC compatible

The CBC-802 is a power supply with solid state circuits for load switching. A brake and clutch may be operated separatelyor, two brakes or two clutches, one unit on at a time. The CBC-802 mounts on an octal socket (purchased separately), and the wiring connections are made at the socket terminals. Octal socket sold separately, refer to mounting specifications for part number.

- Plug-in power supply with solid state switching circuits-increases switch service life
- Adjustable time delay for controlling clutch/brake overlap
- Internally fused for overload protection
- DIN rail mountable
- LED output indicators

Dimensions

All dimensions nominal unless otherwise specified.

Specifications

	CBC-802
Part No.	$6002-448-002$
Input	$120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Output	$90 \mathrm{VDC}, 0.5 \mathrm{~A} \mathrm{max}$.
Status Indicator	Red LED indicates brake energized. Green LED indicates clutch energized.
Circuit Protection	Fused 0.5 Amps, 250 V
Ambient	-20° to 113 ${ }^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$
Temperature	500 uA max. for solid state switches
Leakage Current	Limited by the clutch or brake, variable with application Max. Cycle Rate Momentary contact, maintained contact, or solid state open collector logic Minimum contact rating 20 VDC resistive, 0.01 Amps Minimum input pulse -1 millisecond Adjustments Externally adjusted potentiometer sets overlap between clutch and brake from 0 to 130 MS. Mounting: Two versions of octal socket are available: $6001-101-001$ foot mount $6001-101-002$ DIN rail mount

Connection Diagram

DIN RAIL MOUNT SOCKET

(61)

MCS-103-1 Adjustable Torque Controls

Adjustable Torque Control

The MCS-103-1 is an enclosed control complete with a cover and mounting provisions. A brake and clutch may be operated separately with this control or up to four units, two at a time. The external wiring is connected to the terminal strip located behind the cover.

- ${ }^{6} \boldsymbol{7 N}_{\text {us }}$
- Can be used with electrically released brakes

Dimensions

All dimensions nominal unless otherwise specified.

Connection Diagrams

Normal Clutch/Brake Operation (One unit on at a time)

Clutch/Electrically Released
Brake Operation
(Both units on at a time)

Soft Stop for Electrically Released Brake

The DC voltage required to release the Warner Electric ER-1225 Brake is supplied by the MCS-805-1 or MCS-805-2 Power Supply. The correct brake release voltageapproximately $35-75$ volts DC-is set by adjusting the power supply at the time of brake installation. Temperature compensating circuits provide proper operation over the entire operating range of $0^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$. Switching may be provided on either the AC or DC side of the power supply. The MCS-805-1 may be mounted on its back panel or on 1/2" conduit. The MCS-805-2 has a torque adjustment capability for soft stop applications. The MCS-805-2 requires two switching circuits when used for those applications requiring soft engagement.

Specifications

	MCS-805-1	MCS-805-2
Part No.	$6090-448-006$	$6090-448-007$
Input	$115 / 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \pm 10 \%$	$115 / 230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \pm 10 \%$
Output	$0.4 \mathrm{Amp}, 35 / 75 \mathrm{VDC}$	$0.4 \mathrm{Amp}, 35 / 75 \mathrm{VDC}$
Ambient Temperature	-20° to 150${ }^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $\left.65^{\circ} \mathrm{C}\right)$	-20° to $150^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to 65$\left.{ }^{\circ} \mathrm{C}\right)$
Maximum Cycle Rate	Limited by the clutch or brake and will vary with application. Consult factoryfor specifics.	
External Switches (User furnished)	For DC switching: single pole, single throw. Minimum contact rating 1 amp, 120 volts DC resistive. For AC switching: single pole, single throw. Minimum contact rating 1 amp, 120 volts AC.	
Circuit Protection	.75 Amp 250V Slow Blow 3 AG	

Dimensions

SIDE

Connection Diagrams

Connect the MCS-805-1 or MCS-805-2 Power Supply per the following diagram and instructions:

MCS 805-1

(Jumper if not used)
For AC switching, switch may be in series with input supply. For DC switching, use terminals 7 and 8 as shown.
DO NOT put switch in series with load on terminals 5 and 6.

MCS 805-2

S_{1} Open - brake engaged S_{2} Closed - brake released or tq. adj. mode per S_{1}

CBC-300 Adjustable Torque Controls

The CBC-300 Series Controls provide dual torque controls when connected to any of Warner Electric's 90 volt clutches and brakes.

- ©(u) us
- Current monitored output maintains consistent torque regardless of variation in coil temperature.
- Switch selection tunes control to exactly match current requirements and operating characteristics of each clutch or brake.
- Individual torque adjust allows preset maximum torque tailored to application requirements.
- Short circuit protection, line to line.
- Torque limiting protects machine components from damage.
- Can be used with electrically released brakes.
- Internally Fuse Protected

CBC-300 Series
Dual channel/Dual channel torque adjust
The CBC-300 has two adjustable current channels.

Specifications

	CBC-300
Part No.	6021-448-009
Input Power	120 VAC +10\% -15\%, 50/60 Hz, single phase, 215 VA max.
Output	Pulse-width modulated full wave rectified D.C. Constant current, switch selectable ranges, $0-90$ volt
Ambient Temperature	$+32^{\circ} \mathrm{F}$ to $+113^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$ with plastic cover installed $+32^{\circ} \mathrm{F}$ to $+150^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.66^{\circ} \mathrm{C}\right)$ with plastic cover removed
Circuit Protection	Internal line to line short circuit protection Optional customer supplied fusing on A.C. line, 1.5 Amps, 250 VAC. Fast-acting fuse internal 300 (recommended 300-1)
Current Adjust (via front panel potentiometers)	Dual adjustable channels
Status indicators	"POWER" - green LED indicates A.C. power is applied to the control. "SHORT" - red LED indicates a short circuit condition exists on one or both outputs.
Internal Adjustments	Set DIP switches SW1 and SW2 to suit the current draw of the connected clutch/brake coil:
	$\begin{array}{llllll}\text { Switch Range } & 1 & 2 & 3 & 4 & 5\end{array}$
	Max Current Draw (mA) 60 175 245 305 533
External Switching	Mechanical or electromechanical-customer supplied: 1 Amp, 125 V minimum rating Solid-state, NPN isolated transistor-customer supplied: 2 Amp, J250 V minimum rating. Maximum off state leakage current <1 mA

Connection Diagram

CBC-300 Adjustable Torque Controls

CBC-300

CBC-300-1

Pots for remote current adjustment: 6011-101-001 single turn 6011-101-002 ten turn

Selection Guide

	CBC 300	CBC 300-1
NEMA 1	6021-448-009	$6021-448-002$
Enclosure	Both channels adjustable	Both channels adjustable
	Adjustable by knobs on unit	Adjustable by remote pots
	Max. output at 100%	Max. output at 100%

CBC-500 Adjustable Torque Controls

Panel Mounted

Specifications

	CBC-500-90	CBC-500-24
Part No.	6024-448-003	6024-448-002
Input Voltage	120 VAC	24-30 VAC or VDC
Output Voltage	0-90 VDC	0-24 VDC
Output Current	1 Amp/Channel 2 Amps Total	5 Amps/Channel 5 Amps Total
Auxiliary Supply	12 VDC 250 mA	12 VDC 250 mA
Circuit Protection	Fused 2.5 Amp, 250 V Fast-blo	Fused 6.3 Amp, 250 V Fast-blo
Ambient Temperature	$+32^{\circ}$ to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$	
Status Indicators	Red LED indicates channel is energized.	
Adjustments	Two potentiometers for voltage adjustment of channel 1 and channel 2 output from 0 to full rated voltage. Frequency adjustment from 60 to 400 Hz to reduce clutch/brake "Hum" associated with machine frequencies. Jumper for single or dual operation. See Appendix for explanation.	
Inputs:	3 Optically coupled, 10-30 VDC, $3-9 \mathrm{~mA}$ for Channel 1, Channel 2 and Channel 2 override (applies full voltage to channel 1 output)	

CBC-500 series Dual torque adjustable power supplies

The CBC-500 series is a dual channel adjustable voltage control with optically isolated input switching for 24 and 90 volt electric clutches and brakes. These controls can be set up to energize the two outputs alternately (single) or simultaneously (dual). Refer to the Appendix for additional setup and switching information.

- Dual adjustable channels
- Optically isolated input switching
- Single or dual channel operation
- Auxiliary 12 V supply
- Can be used with electrically released brakes

Enclosure (Optional)

- Lift off hinge
- Quick-release latches
- Conforms to NEMA Type 13
- European Standard IEC 529, IP65

Connection Diagram

All dimensions nominal unless otherwise specified.

Dimensions

Part No. 6042-101-004
8"H x 6"W x 4"D $(203.2 \times 152.4 \times 101.6 \mathrm{~mm})$

CBC-550 Adjustable Torque Controls

Panel Mounted

CBC-550 series

Dual adjustable with power transformer

The CBC-550 series is a dual channel adjustable voltage control with optically coupled switching for 24 and 90 volt electric clutches and brakes. These controls can be set up to energize the two outputs alter-nately (single) or simultaneously (dual). Refer to the Appendix for additional setup and switching information.

The CBC-550 series has a power transformer which will operate with a $120,220,240,380$, or 480 VAC input.

- Dual adjustable channels
- Optically isolated input switching
- Single or dual channel operation
- Can be used with electrically released brakes

Specifications

	CBC-550-90	CBC-550-24
Part No.	6024-448-006	6024-448-005
Input Voltage	120/220/240/380/480 V	
Output Voltage	0-90 VDC	0-24 VDC
Output Current	1 Amp/Channel 1.2 Amps Total	4 Amps/Channel 4 Amps Total
Auxiliary Supply	12 VDC 250 mA	12 VDC 250 mA
Circuit Protection	Fused 1.5 Amp, 250 V fast-blo	Fused 5 Amp, 250 V fast-blo
Ambient Temperature	$+32^{\circ}$ to $122^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$	
Status Indicators	Red LED indicates channel is energized.	
Adjustments	Two potentiometers for voltage adjustment of channel 1 and channel 2 output from 0 to full rated voltage. Frequency adjustment from 60 to 400 Hz to reduce clutch/brake "Hum" associated with machine frequencies. Jumper for single or dual operation. See Appendix for explanation.	
Inputs	3 Optically coupled, 10-30 VDC, 3-9 mA for Channel 1, Channel 2 and Channel 2 override (applies full voltage to channel 1 output)	

Enclosure (Optional)

- Lift off hinge
- Quick-release latches
- Conforms to NEMA Type 13
- European Standard IEC 529, IP65

Part No.	$\mathbf{6 0 0 6 - 1 0 1 - 0 0 7}$
Size	$6 " \mathrm{H} \times 6$ "W $\times 6$ "D
	$(152.4 \times 152.4 \times 152.4 \mathrm{~mm})$

CBC-550 Adjustable Torque Controls

Panel Mounted

Dimensions

Connection Diagram

All dimensions nominal unless otherwise specified.

CBC-1825R Adjustable Torque Controls

Panel Mounted

CBC-1825R series

The CBC-1825R is designed to provide consistent and repeatable acceleration and deceleration when used with Warner Electric 90 VDC clutches and brakes. Current to each channel is introduced along an adjustable time ramp and monitored continuously. Adjustments include initial pull-in pulse, hold level, maximum torque, and ramp time. LEDs are provided on the circuit board to indicate power is applied to the clutch or brake unit.

Note: It is recommended that the auto-gap springs be removed from the clutch and brake for successful accel-decel application.

Specifications

	CBC-1825R
Part No.	1825-448-001
Input Voltage	$120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 100 \mathrm{VA}$ maximum
Output Current	Current driven PWM, compatible with 90 VDC clutch/brake (switch selectable current output)
Auxiliary Supply	12 VDC 250 mA
Circuit Protection	Input Fused 1.5 Amp, 250 V fast-blo clutch and brake outputs are short circuit protected
Status Indicators	Clutch and brake LEDs indicate output is energized Short circuit LED indicates a fault
Ambient Temperature	0° to $122^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Switching	Contact rating: $15 \mathrm{~mA} @ 15 \mathrm{~V}$, open collector NPN 2mA maximum allowable leakage current and 2 V maximum saturation voltage

Set-up

All dimensions nominal unless otherwise specified.

Dimensions

Connection Diagram

CBC-700 Overexcitation Controls

General Purpose OEX Control

CBC-700 Series

Simple, compact, high performance OEX control for either 90 or 24 VDC clutches and brakes. OEX spike duration and anti-overlap times delay are adjustable. Two optically isolated inputs.

- High performance
- Switch selectable OEX duration
- Force decay suppression with adjustable anti-overlap time delay
- Compact, flexible mounting
- Models for 24 or 90 volt clutches and brakes
- Cycle rate limited by clutch/brake

Specifications

	CBC-700-90	CBC-700-24
Part No.	6042-448-003	6042-448-002
Input	120 VAC, $50 / 60 \mathrm{~Hz}$	24-28 VAC, $50 / 60 \mathrm{~Hz}$
Output Voltages Steady State Overexcitation	$\begin{aligned} & 90 \text { VDC } \\ & 340 \text { VDC } \end{aligned}$	$\begin{aligned} & 24 \text { VDC } \\ & 105 \text { VDC } \end{aligned}$
Output Current (Per channel alternately)	. 5 Amps	3.5 Amps
OEX Pulse Duration	Adjustable through logic board dip switches (see service manual)	
Inputs	Two-optically isolated (10-30 VDC)	
Ambient Temperature Range	$0^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$	
Maximum Off State Leakage	$<2 \mathrm{~mA}$ (inputs)	
Circuit Protection	1.6A Fast Act (5x20 mm)	5A Slo-Blo (5 x 20 mm)
Auxiliary Supply	$12 \mathrm{VDC}, 250 \mathrm{~mA}$ maximum	

Enclosure (Optional)

- Lift off hinge
- Quick-release latches
- Conforms to NEMA Type 13
- European Standard IEC 529, IP65

Part No.	6042-101-004
Size	8 "H $\times 6$ "W $\times 4 " \mathrm{D}$
	$(203.2 \times 152.4 \times 101.6 \mathrm{~mm})$

Dimensions

Connection Diagram

TYPICAL 3 WIR SWITCHING CONFIGURATION

NOTE: CR, SW user furnished switch options for use with control.

CR normally open relay contact
SW normally open push button switch

CBC-750 Overexcitation Control

Rapid Acceleration/Deceleration

CBC-750 Dual channel, current based OEX with switching logic

Warner Electric's CBC-750 Constant Current Overexcitation Clutch/Brake Control is a solid-state electronic control designed to increase the cycle rate capabilities and accuracies of electromagnetic clutches and brakes. The control accomplish this by sending a momentary high voltage overexcitation spike to the clutch and/or brake magnetic coil to build a high density magnetic flux field almost instantaneously. By using overexcitation, the response time is reduced as dramatically as performance is increased. For example, the current build up time of a 5 inch, 6 volt magnet is reduced from 84 milliseconds to 2 milliseconds.

The CBC-750 user selects either 120, 220 or 240 VAC operation at the time of installation, and is available for 6 volt clutches and brakes.

LED indicators on the faceplate of each control tell the user the status of input signals, output activation and any auxiliary inputs. A reset switch resets the output should a short be detected. Remote torque adjust potentiometer inputs are also provided. Appropriate current range for each size clutch or brake is selected by a dip switch. Constant current for each level is assured by the control's design.

- Maintains torque at preset levels regardless of temperature variations
- Automatically controls OEX pulse duration for optimum response without overheating coils
- Automatically prevents clutch and brake "overlap"
- Configurable as an analog follower control through remote top input
- Integral switching logic through auxiliary, inhibit and override inputs

Shown with optional cover, part number 6041-101-004

- High performance OEX control
- Constant current output capability
- Available for 6 volt clutches and brakes
- Outputs short circuit protected.
- AC/DC optically isolated inputs
- Transformer isolation Remote torque potentiometer capability
- Input/Output inhibit functions
- Switch selectable OEX function
- Automatic $\mathrm{CH} 1 / \mathrm{CH} 2$ anit-overlap feature
- Heavy duty suppression circuits
- Selectable output current ranges
- Remote status indicators inputs and outputs

Specifications

	CBC-750-6
Part No.	$6041-448-001$
Input Power	$120 / 220 / 240$ VAC, $\pm 10 \%, 50 / 60 \mathrm{~Hz}, 350 \mathrm{VA}$ (switch selectable)
	Opto-isolated 10-30 VDC @ 10-35 mA nominal sinking or sourcing, or
Control Inputs	$24 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ @ 22 mA nominal, or
	120 VAC $(50 / 60 \mathrm{~Hz}) @ 20 \mathrm{~mA}$ nominal
Clutch/brake Output	
Steady State Output	
Current controlled	.910 to 4.34 A max.
Current Rise Time	Dependent on clutch/brake size
Current Fall Time	Depending on clutch/brake size
Overexcitation Voltage	75 VDC nom.
Overexcitation Time	Automatic adjustment by control feedback
Anti-overlap Time	Automatic adjustment by control feedback
Power Supply Output	12 VDC, ± 0.6 VDC, 250 mA max.
Auxiliary Indicator	Opto-isolated NPN transistors
Outputs	24 VDC maximum, 20 mA max., reverse polarity protected
Circuit Protection	Internal short circuit protection on each output channel.
Fusing	
AC Input Line	2 Amp, 250 V Slo-Blo
OEX Supply	10 Amp, 32 V Slo-Blo

CBC-750 Overexcitation Controls

Rapid Acceleration/Deceleration

Seven optically isolated inputs accept 10-30V A.C./D.C. (TB2) or 120 VAC (TB3), configured through set-up switches

1. Channel 2 Input
2. Channel 2 Input Inhibit (disregards channel 2 input signal)
3. Auxiliary Input
4. Channel 1 Input
5. Channel 1 Input Inhibit (disregards channel 1 input signal)
6. Output Inhibit (deactivates both output channels)
7. Channel 2 Override (applies full voltage to channel 1 output)

Connection Diagram

Dimensions

All dimensions nominal unless otherwise specified.

Setup Switches
SW1: AC Voltage selection switch on terminal board inside control unit

Max. Current Output
(SW7 \& SW8 settings)

Nominal
Voltage
$\begin{array}{llllllll}6 & 0.910 & 2.35 & 3.183 & 3.760 & 4.340\end{array}$

Appendix

CBC-500/550

Single vs. Dual Operation

The CBC-500/550 series controls allow operation in either a single or dual mode. The mode of operation is determined via the position of a jumper on the main control board.

The controls are shipped with the jumper in the J1 or single mode position. A variety of output logic can be accomplished via the single/dual jumper position and whether the control is wired to one input switching device (2-wire mode) or two input switching devices (3 -wire mode). The following diagrams show how each channel (output) of the control can be either alternately or simultaneously energized.

2-wire Switching Option

Control's switching terminal block

Jumper Mode	Switch $\mathbf{1}$	Channel $\mathbf{1}$	Channel $\mathbf{2}$
J1-Single	Open	Off	Powered
	Powered	Off	
J2-Dual	Open Closed	Powered Off	Powered Off

3-wire Switching Option

Control's switching terminal block

1. What transformers can be used with controls requiring 24-30 VAC input?

Manufacturer	Part Number	Primary	Secondary
Abbott	6B 12-160	115 VAC	24V @ 6 amps
Quality	6-K-119VBR	115/230 VAC	24V @ 8 amps
Signal	$24-6$	115 VAC	24V @ 6 amps
Signal	DP24-6	$115 / 230$ VAC	24V @ 6 amps
Triad	F-260-U	115 VAC	24V @ 6 amps

2. What is the difference between a MCS-801 and a CBC-801-1 or between a MCS-103 and a MCS-103-1?
There is no performance difference between the MCS-103 and MCS-103-1. There is no performance difference between the MCS-801 and CBC-801-1. The CBC-$801-1$ is roughly $1 / 4$ " shorter than the MCS-801. The units wire and work exactly the same.
3. Which power supplies can be used with the SF 1525HT and SFC 1525HT coil?
The SF and SFC 1525 High Torque clutch coils require . 794 amps of current to provide full rated torque. The following power supplies and controls will provide the needed power.

CBC-100	.8 amps	MCS-103-1	1.25 amps
CBC-150	.8 amps	CBC-500	1 amp
CBC-801	1.25 amps	CBC-550	1 amp

4. Can I use a CBC-160 with a variable frequency drive and AC motor?
No. As the voltage to the drive is varied, the output to the electrically released brake would also vary. This would cause the brake to re-engage when it should be released.
5. Which power supplies offer a 12 VDC power source that could be used to power auxiliary switch inputs such as inductive or photoelectric sensors?

CBC-500, CBC-550, CBC-700, CBC-750
6. We plan to use a PLC in the application. Does that impact our choice of control or power supply? The CBC-801s and MCS-103-1 are not very PLC friendly. Both require a 10 amp relay for switching which is not very common for PLCs. Alternatives would be CBC-150 or CBC-500/550 respectively which are more 'PLC-Friendly'.
7. Which of the controls would allow for the independent operation of two clutches or two brakes?
Four controls allow for completely independent operation of two clutches or brakes. That is, that a clutch and brake can both be on at once, both off at once, or one on and one off. These controls are:

CBC-801-1 and CBC-801-2, MCS-103-1, CBC-300
The CBC-500/550 allows for operation of both channels on at once, both channels off at once or cycling between channel one and two. However, in the both-on/both-off mode, you cannot also do independent single channel operation.
8. Our PLC can provide 24 or 90 volts output. Why do we need a separate power supply at all?
There are two reasons to use a Warner Electric control or power supply with clutches and brakes. First, the electric coil within clutches and brakes can create a significant back EMF spike when turned off. This can damage PLC circuits (some PLCs include a diode for protection). All Warner Electric controls and power supplies include a suppression network to protect upstream electrical components from the back EMF spike. Second, this same suppression network will speed the collapse of the magnetic field within a clutch or brake. Without the suppression circuit, a clutch and brake will often overlap each other in performance with resulting poor machine performance.
9. Which controls can be used with electrically released brakes?
The CBC-160-1 and CBC-160-2 are designed specifically to use with the conduit box of EM and EUM electrically released brake designs. The CBC-160-1 and CBC-160-2 can also be used with ER and FB brake designs.

The MCS-103-1, CBC-300 and CBC-500/550 can all be used with ER, FB as well as UM-FBC, EM and EUM-FBB and EM and EUM-MBFB designs.

The MCS 805-1 and MCS 805-2 are for use only with the ER 1225 brakes. The ERS series brakes can be used with the CBC-100 or CBC-801 power supplies.

Ordering Information

Model	Part Number	Page
CBC-100-1	6003-448-101	..CTL-4
CBC-100-2	6003-448-103.	.CTL-4
MCS-103-1	6010-448-002.	.CTL-8
CBC-150-1	6004-448-001	. CTL-4
CBC-150-2	6004-448-002.	.CTL-4
CBC-160-1	6013-448-001	.CTL-5
CBC-160-2	6013-448-002.	.CTL-5
CBC-300	6021-448-009.	CTL-11
CBC-300-1	6021-448-002.	CTL-11
CBC-500-24	6024-448-002.	CTL-12
CBC-500-90	6024-448-003.	CTL-12
CBC-550-24	6024-448-005.	CTL-14
CBC-550-90	6024-448-006.	CTL-14
CBC-1825R	1825-448-001.	CTL-16
CBC-700-24	6042-448-002.	CTL-18
CBC-700-90	6042-448-003.	CTL-18
CBC-750-6	6041-448-001.	CTL-20
CBC-801-1	6001-448-004	.CTL-6
CBC-801-2	6001-448-006.	. CTL-6
Octal Socket, Foot Mount	6001-101-001.	, CTL-7
Octal Socket, DIN Rail Mount.....	6001-101-002.	, CTL-7
CBC-802	6002-448-002.	.CTL-7
Optional Enclosure: CBC-500, CBC-700	6042-101-004.	CTL-18
Optional Enclosure: CBC-550	6006-101-007.	CTL-14
MCS-805-	6090-448-006.	.CTL-9
MCS-805-2	6090-448-007.	.CTL-9

Part Numbers Ordering Information

Part Numbers Ordering Information

Spring-Set Electrically Released Brakes

Spring-Set Brakes (Static Holding) - ERS

Description	Model	Part No.	Voltage	Pg. No
ERS	ERS-26	$5158-170-016$	24	A-5
		$5158-170-015$	90	
	ERS-42	$5151-170-002$	24	A-5
		90	A-5	
	ERS-49	$5155-170-002$		A-5
		90		
	ERS-57	$5153-170-003$	24	A-5
		90	24	

ERS Mounting Flanges (Optional)

Model	Part No.	Pg. No.
ERS-26	$686-0182$	A-9
ERS-42	$686-0183$	A-9
ERS-49	$686-0184$	A-9
ERS-57	$686-0185$	A-9
ERS-68	$686-0186$	A-9

ERS Splined Hubs - ERS

Model	Bore Size	Part No.	Pg. No.
ERS-26	. 250	5158-541-006	A-8
	. 312	5158-541-007	A-8
	. 375	5158-541-008	A-8
ERS-42	. 375	5151-541-002	A-8
	. 500	5151-541-003	A-8
	. 625	5151-541-004	A-8
	. 750	5151-541-005	A-8
ERS-49	. 375	5155-541-002	A-8
	. 500	5155-541-003	A-8
	. 625	5155-541-004	A-8
	. 750	5155-541-005	A-8
	. 875	5155-541-006	A-8
ERS-57	. 500	5153-541-004	A-8
	. 625	5153-541-005	A-8
	. 750	5153-541-006	A-8
	. 875	5153-541-007	A-8
	1.000	5153-541-008	A-8
ERS-68	1.000	5154-541-005	A-8
	1.125	5154-541-006	A-8
	1.250	5154-541-007	A-8
	1.375	5154-541-008	A-8
	1.500	5154-541-009	A-8
Conduit Box		5154-101-001	A-8

EM/ERS Spring-Set Brake Modules

Model	Part No.	Voltage	Pg. No.
EM-50/ERS-42	$5370-170-201$	24	A-13
	$5370-170-203$	90	
EM-180/ERS-57	$5370-170-206$	24	A-13
	$5370-170-207$	90	
	$5370-170-211$	24	A-13
	$5370-170-212$	90	

Spring-Set Brakes - ERD

Model	Part No.	Pg. No.
ERD 5		$\mathrm{A}-17$
ERD 10		$\mathrm{A}-17$
ERD 20	$\mathrm{A}-17$	
ERD 35	$\mathrm{A}-17$	
ERD 60	$\mathrm{A}-17$	
ERD 100		$\mathrm{A}-17$
ERD 170		$\mathrm{A}-17$
ERD 300	ACG830A1P1	$\mathrm{A}-26$
ERD Rectifiers	ACG830A1P2	$\mathrm{A}-26$

INDEX

Page	Model Number	Part Number	Service Parts Page
A-10	ERS 42	5151-170-001	N/A
A-10	ERS 42	5151-170-002	N/A
A-10	ERS 42	5151-541-002	N/A
A-10	ERS 42	5151-541-003	N/A
A-10	ERS 42	5151-541-004	N/A
A-10	ERS 42	5151-541-005	N/A
A-10	ERS 57	5153-170-002	N/A
A-10	ERS 57	5153-170-003	N/A
A-10	ERS 57	5153-541-004	N/A
A-10	ERS 57	5153-541-005	N/A
A-10	ERS 57	5153-541-006	N/A
A-10	ERS 57	5153-541-007	N/A
A-10	ERS 57	5153-541-008	N/A
A-10	ERS 68	5154-170-001	N/A
A-10	ERS 68	5154-170-002	N/A
A-10	ERS 68	5154-541-005	N/A
A-10	ERS 68	5154-541-006	N/A
A-10	ERS 68	5154-541-007	N/A
A-10	ERS 68	5154-541-008	N/A
A-10	ERS 68	5154-541-009	N/A
A-10	ERS 49	5155-170-001	N/A
A-10	ERS 49	5155-170-002	N/A
A-10	ERS 49	5155-541-002	N/A
A-10	ERS 49	5155-541-003	N/A
A-10	ERS 49	5155-541-004	N/A
A-10	ERS 49	5155-541-005	N/A
A-10	ERS 49	5155-541-006	N/A
A-10	ERS 26	5158-170-015	N/A
A-10	ERS 26	5158-170-016	N/A
A-10	ERS 26	5158-541-006	N/A
A-10	ERS 26	5158-541-007	N/A
A-10	ERS 26	5158-541-008	N/A
A-13	EM-50/ERS-42	5370-170-201	N/A
A-13	EM-50/ERS-42	5370-170-203	N/A
A-13	EM-50/ERS-49	5370-170-206	N/A
A-13	EM-50/ERS-49	5370-170-207	N/A
A-13	EM-180/ERS-57	5370-170-211	N/A
A-13	EM-180/ERS-57	5370-170-212	N/A
A-13	EM-180/ERS-49	5370-170-219	N/A
A-13	EM-180/ERS-49	5370-170-220	N/A
A-13	EM-210/ERS-68	5371-170-046	N/A
A-13	EM-210/ERS-68	5371-170-047	N/A
A-13	EM-215/ERS-68	5371-170-051	N/A
A-13	EM-215/ERS-68	5371-170-052	N/A
A-29	ERD 060 VAR 02	BT212094246	N/A
A-29	ERD 060 VAR 02	BT212094247	N/A
A-29	ERD 060 VAR 02	BT212094248	N/A
A-29	ERD 060 VAR 00	BT212094250	N/A
A-29	ERD 060 VAR 00	BT212094251	N/A
A-29	ERD 060 VAR 00	BT212094252	N/A
A-29	ERD 100 VAR 02	BT212094254	N/A
A-29	ERD 100 VAR 02	BT212094255	N/A
A-29	ERD 100 VAR 02	BT212094256	N/A
A-29	ERD 100 VAR 00	BT212094258	N/A
A-29	ERD 100 VAR 00	BT212094259	N/A
A-29	ERD 100 VAR 00	BT212094260	N/A
A-29	ERD 170 VAR 02	BT212094355	N/A
A-29	ERD 170 VAR 02	BT212094356	N/A
A-29	ERD 170 VAR 02	BT212094357	N/A
A-29	ERD 170 VAR 00	BT212094358	N/A
A-29	ERD 170 VAR 00	BT212094359	N/A

Page	Model Number	Part Number	Service Parts Page
A-29	ERD 170 VAR 00	BT212094360	N / A
A-29	ERD 300 VAR 02	BT212094361	N / A
A-29	ERD 300 VAR 02	BT212094362	N / A
A-29	ERD 300 VAR 02	BT212094363	N / A
A-29	ERD 300 VAR 00	BT212094364	N / A
A-29	ERD 300 VAR 00	BT212094365	N / A
A-29	ERD 300 VAR 00	BT212094366	N / A
A-28	ERD 005 Var 00	G5UE005A01P1	N / A
A-28	ERD 005 Var 00	G5UE005A01P2	N / A
A-28	ERD 005 Var 00	G5UE005A01P3	N / A
A-28	ERD 005 Var 02	G5UE005A21P1	N / A
A-28	ERD 005 Var 02	G5UE005A21P2	N / A
A-28	ERD 005 Var 02	G5UE005A21P3	N / A
A-28	ERD 020 VAR 00	G5UE020A01P1	N / A
A-28	ERD 020 VAR 00	G5UE020A01P2	N / A
A-28	ERD 020 VAR 00	G5UE020A01P3	N / A
A-28	ERD 020 VAR 02	G5UE020A21P1	N / A
A-28	ERD 020 VAR 02	G5UE020A21P2	N / A
A-28	ERD 020 VAR 02	G5UE020A21P3	N / A
A-28	ERD 035 VAR 00	G5UE035A01P1	N/A
A-28	ERD 035 VAR 00	G5UE035A01P2	N/A
A-28	ERD 035 VAR 00	G5UE035A01P3	N/A
A-28	ERD 035 VAR 02	G5UE035A21P1	N/A
A-28	ERD 035 VAR 02	G5UE035A21P2	N/A
A-28	ERD 035 VAR 02	G5UE035A21P3	N/A
For Unibrakes - see pages A-32 to A-45	SP-2 to SP-5		

Notes
\qquad
\longrightarrow
\qquad

Notes

Premier Industrial Company Leading Brands

OTHER PRODUCT SOLUTIONS FROM ALTRA INDUSTRIAL MOTION

Our comprehensive product offerings include various types of clutches and brakes, overrunning clutches, engineered bearing assemblies, gearing and gear motors along with linear motion products, belted drives, couplings, limit switches, precision motors, drives \& controls, miniature motors and engine braking systems. With thousands of product solutions available, Altra provides true single source convenience while meeting specific customer requirements. Many major OEMs and end users prefer Altra products as their No. 1 choice for performance and reliability.

WWW.ALTRAMOTION.COM

Electric Clutches \& Brakes
Inertia Dynamics
Matrix
Stromag
Warner Electric

Heavy Duty Clutches \& Brakes
Industrial Clutch
Stromag
Svendborg Brakes

Precision Motors \& Automation
Kollmorgen

Twiflex
Wichita Clutch

Overrunning Clutches
Formsprag Clutch
Marland Clutch
Stieber

Linear Systems
Thomson
Warner Linear

Engineered Couplings
\& Universal Joints
Ameridrives
Bibby Turboflex
Guardian Couplings
Huco
Lamiflex Couplings
Stromag
TB Wood's

Engine Braking Systems
Jacobs Vehicle Systems

Gear Drives \& Gear Motors
Bauer Gear Motor
Boston Gear
Delroyd Worm Gear
Nuttall Gear

Specialty Components

Stromag
TB Wood's

Altra Industrial Motion

Warner Electric Facilities

North America	Europe	Asia Pacific
USA	France	Australia
31 Industrial Park Road	7, rue Champfleur, B.P. 20095	+6129894 0133
New Hartford, CT 06057 - USA 860-379-1252	St Barthelemy d'Anjou - France $\text { +33 (0)2 } 41212424$	China
Electromagnetic Clutches and Brakes	Electromagnetic Clutches and Brakes	Hong Kong $\text { +852 } 26159313$
449 Gardner Street South Beloit, IL 61080 - USA	Customer Service $\text { +33 (0)2 } 41212476$	Singapore $+6564874464$
4578 East Park 30 Drive	Application Support $\text { +33 (0) } 241212424$	Taiwan $\text { +886 } 225778156$
Columbia City, IN 46725 - USA 260-244-6183		Thailand +66 23225527
Precision Electric Coils and Electromagnetic Clutches and Brakes		
Customer Service 1-800-825-6544		
Application Support $1-800-825-9050$		

The Brands of Altra Industrial Motion

Couplings
Ameridrives www.ameridrives.com
Bibby Turboflex www.bibbyturboflex.com
Guardian Couplings www.guardiancouplings.com

Huco
www.huco.com
Lamiflex Couplings
www.lamiflexcouplings.com
Stromag
www.stromag.com
TB Wood's
www.tbwoods.com

Geared Cam Limit Switches
Stromag
www.stromag.com
Electric Clutches \& Brakes
Inertia Dynamics
www.idicb.com
Matrix
www.matrix-international.com
Stromag
www.stromag.com
Warner Electric
www.warnerelectric.com
Linear Products
Warner Linear
www.warnerlinear.com
Engineered Bearing Assemblies
Kilian
www.kilianbearings.com

Heavy Duty Clutches \& Brakes
Industrial Clutch
www.indclutch.com
Twiflex
www.twiflex.com
Stromag
www.stromag.com
Svendborg Brakes www.svendborg-brakes.com

Wichita Clutch
www.wichitaclutch.com

Belted Drives
TB Wood's
www.tbwoods.com

Gearing

Bauer Gear Motor www.bauergears.com

Boston Gear
www.bostongear.com
Delroyd Worm Gear
www.delroyd.com
Nuttall Gear
www.nuttallgear.com

Overrunning Clutches
Formsprag Clutch
www.formsprag.com
Marland Clutch
www.marland.com
Stieber
www.stieberclutch.com

[^3]
[^0]: Note: Holes for attaching flange to mounting surface to be provided by customer.

[^1]: * Coil voltages can vary slightly depending on unit size.
 ** Manual release available on variation 02 only.

[^2]: NOTE: Torque values are in inch lbs. for size 400 and smaller, and in ft.lbs. for size 500 and larger.

[^3]: Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company's terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.
 © 2018 by Warner Electric LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Warner Electric LLC or one of its affiliated companies.

